1 Possible Solutions

Since exhausting the available primary memory is the problem, it is clear that
a solution need to include using files on the hard drive to replace or extend the
primary memory. We looked at the two most promising solutions and evaluated
them in light of this specific problem.

1.1 Database

Description

A database could be used to store information about the packets, this would
shift the responsibility of managing memory over to a database system. Possible
candidates for use in this project are SQLite! and MySQL Embedded?, both of
which are supported on all platforms Wireshark runs on.

Evaluation

Database management systems (DBMS) are made for storing large amounts
of data in a reliable way and make it possible to retrieve the data as fast as
possible. DBMSes usually store their data on a hard drive, but use primary
memory for caching to get higher throughput.

Using a database would mean that Wireshark would not itself need to man-
age its packet representation, but there are several drawbacks to this approach.
First and foremost, a DBMS is designed with reliability and data-consistency
as their primary goals and speed as a secondary goal. This has several impli-
cations, the most severe being that data would be written to disk as soon as
it is added to the database. This would lead to slow performance compared to
directly using memory even when there is available memory.

1.2 Memory-mapped Files
Description

An alternative for getting more memory than the machine’s RAM is to use
memory-mapped files. This works by creating files and mapping regions of these
files to the virtual memory address space. After this is done, these files will be
treated as they were part of the virtual memory, just like physical memory and
paging files. The amount of memory that can be mapped in this way is limited
by the amount of memory that can be addressed by CPU. On a 32-bit machine
this limit is 232 bytes = 4 GiB (even though this can be extended a bit by
using PAE - this is not considered here). However, on a 64-bit machine this
limitation currently not a problem as the amount of memory it can address is
in the exabytes (10%).

Ihttp://wuw.sqlite.org/
2http://www.mysql.com/products/embedded/



Evaluation

Du to the limitations of 32-bits architectures mentioned above a solution with
memory-mapped files will only be a real benefit on a 64-bit architecture. To be
able to use more than 4 GiB of memory on a 32-bit computer one would have
to mange memory oneself — unmapping (sections of) files to make room for new
data when we run out of addressing space. This kind of memory management
is difficult to do right and is very error-prone. Writing a memory manager as
part of our modification is out of this project’s scope.

There is also some issues with Windows compatibility. The mmap system
call is part of the POSIX standard, but is not supported on Windows. There are
equivalent system calls, though; VirtualAlloc/VirtualFree will accomplish the
same on Windows, but this still means that we need to write Windows-specific
code for this functionality.

Another issue to be aware of is the operating system’s limitation of a process’
virtual memory. On modern 64-bits OSes this is no longer a problem. 64-bit
versions of Windows support up 8 TiB of virtual address space per 64-bit process
[?], 64-bit Mac OS X’s limit is 18 EiB [?], 64-bit Linux sets the limit to 128 TiB
[?]. These limits are several orders of magnitude over what will be needed in
the near future.

2 Chosen Solution

The group chose to base their solution on memory-mapped files for the reason
outlined above. This solution will work on a 32-bit plattform, but it will be
limited to 4 GiB of memory due to the mentioned reason. This means that
this solution will only be of great help to users of 64-bit systems. The group
considers this solution to be the best solution within the frame of this project.

2.1 Proof of concept

To confirm that our idea is feasible and to get familiar with the use of mmap
to map a file into memory we wrote a simple test program in C — the same
language Wireshark is written in. The program was tested on a 32-bit machine
with 1 GiB of memory and used mmap to map two files, each with 1 GiB of
zeroes, into the memory space and then read every thousand double word (4
bytes) and printed its address. The output from the program is shown in figure
1.

As the output shows, the mapped files span a memory area of 0xb7dc4000 —
0237dc4000 = 2 - 230 bytes, i.e., 2 GiB. This was done with paging turned off,
meaning that the system used 2 GiB of continouos address space with only one
GiB of physical memory available, thus showing that it is possible for a process
to use more memory than the sum of physical memory and operating system
paging files.



$ ./mmap _test

37dc4000: O
37dc4fal0: 0
37dcb5f40: 0
[...]

b7dc19a0: 0
b7dc2940: 0
b7dc38e0: 0

Figure 1: Output from running the memory-mapping test program. The mem-
ory addresses span 2 - 239 bytes (2 GiB)



