File: | epan/addr_resolv.c |
Warning: | line 772, column 9 Value of 'errno' was not checked and may be overwritten by function 'fgets' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* addr_resolv.c | |||
2 | * Routines for network object lookup | |||
3 | * | |||
4 | * Laurent Deniel <[email protected]> | |||
5 | * | |||
6 | * Add option to resolv VLAN ID to describing name | |||
7 | * Uli Heilmeier, March 2016 | |||
8 | * | |||
9 | * Wireshark - Network traffic analyzer | |||
10 | * By Gerald Combs <[email protected]> | |||
11 | * Copyright 1998 Gerald Combs | |||
12 | * | |||
13 | * SPDX-License-Identifier: GPL-2.0-or-later | |||
14 | */ | |||
15 | ||||
16 | #include "config.h" | |||
17 | ||||
18 | #include <stdio.h> | |||
19 | #include <stdlib.h> | |||
20 | #include <string.h> | |||
21 | #include <errno(*__errno_location ()).h> | |||
22 | ||||
23 | #include <wsutil/strtoi.h> | |||
24 | #include <wsutil/ws_assert.h> | |||
25 | ||||
26 | #include "enterprises.h" | |||
27 | #include "manuf.h" | |||
28 | ||||
29 | /* | |||
30 | * Win32 doesn't have SIGALRM (and it's the OS where name lookup calls | |||
31 | * are most likely to take a long time, given the way address-to-name | |||
32 | * lookups are done over NBNS). | |||
33 | * | |||
34 | * macOS does have SIGALRM, but if you longjmp() out of a name resolution | |||
35 | * call in a signal handler, you might crash, because the state of the | |||
36 | * resolution code that sends messages to lookupd might be inconsistent | |||
37 | * if you jump out of it in middle of a call. | |||
38 | * | |||
39 | * There's no guarantee that longjmp()ing out of name resolution calls | |||
40 | * will work on *any* platform; OpenBSD got rid of the alarm/longjmp | |||
41 | * code in tcpdump, to avoid those sorts of problems, and that was | |||
42 | * picked up by tcpdump.org tcpdump. | |||
43 | * | |||
44 | * So, for now, we do not use alarm() and SIGALRM to time out host name | |||
45 | * lookups. If we get a lot of complaints about lookups taking a long time, | |||
46 | * we can reconsider that decision. (Note that tcpdump originally added | |||
47 | * such a timeout mechanism that for the benefit of systems using NIS to | |||
48 | * look up host names; that might now be fixed in NIS implementations, for | |||
49 | * those sites still using NIS rather than DNS for that.... tcpdump no | |||
50 | * longer does that, for the same reasons that we don't.) | |||
51 | * | |||
52 | * If we're using an asynchronous DNS resolver, that shouldn't be an issue. | |||
53 | * If we're using a synchronous name lookup mechanism (which we'd do mainly | |||
54 | * to support resolving addresses and host names using more mechanisms than | |||
55 | * just DNS, such as NIS, NBNS, or Mr. Hosts File), we could do that in | |||
56 | * a separate thread, making it, in effect, asynchronous. | |||
57 | */ | |||
58 | ||||
59 | #ifdef HAVE_NETINET_IN_H1 | |||
60 | # include <netinet/in.h> | |||
61 | #endif | |||
62 | ||||
63 | #ifdef HAVE_NETDB_H1 | |||
64 | #include <netdb.h> | |||
65 | #endif | |||
66 | ||||
67 | #ifdef HAVE_SYS_SOCKET_H1 | |||
68 | #include <sys/socket.h> /* needed to define AF_ values on UNIX */ | |||
69 | #endif | |||
70 | ||||
71 | #ifdef _WIN32 | |||
72 | #include <winsock2.h> /* needed to define AF_ values on Windows */ | |||
73 | #include <ws2tcpip.h> | |||
74 | #endif | |||
75 | ||||
76 | #ifdef _WIN32 | |||
77 | # define socklen_t unsigned int | |||
78 | #endif | |||
79 | #include <ares.h> | |||
80 | #include <ares_version.h> | |||
81 | ||||
82 | #include <glib.h> | |||
83 | ||||
84 | #include "packet.h" | |||
85 | #include "addr_resolv.h" | |||
86 | #include "wsutil/filesystem.h" | |||
87 | ||||
88 | #include <wsutil/report_message.h> | |||
89 | #include <wsutil/file_util.h> | |||
90 | #include <wsutil/pint.h> | |||
91 | #include <wsutil/inet_cidr.h> | |||
92 | ||||
93 | #include <epan/strutil.h> | |||
94 | #include <epan/to_str.h> | |||
95 | #include <epan/maxmind_db.h> | |||
96 | #include <epan/prefs.h> | |||
97 | #include <epan/uat.h> | |||
98 | #include "services.h" | |||
99 | ||||
100 | #define ENAME_HOSTS"hosts" "hosts" | |||
101 | #define ENAME_SUBNETS"subnets" "subnets" | |||
102 | #define ENAME_ETHERS"ethers" "ethers" | |||
103 | #define ENAME_IPXNETS"ipxnets" "ipxnets" | |||
104 | #define ENAME_MANUF"manuf" "manuf" | |||
105 | #define ENAME_WKA"wka" "wka" | |||
106 | #define ENAME_SERVICES"services" "services" | |||
107 | #define ENAME_VLANS"vlans" "vlans" | |||
108 | #define ENAME_SS7PCS"ss7pcs" "ss7pcs" | |||
109 | #define ENAME_ENTERPRISES"enterprises" "enterprises" | |||
110 | ||||
111 | #define HASHETHSIZE2048 2048 | |||
112 | #define HASHHOSTSIZE2048 2048 | |||
113 | #define HASHIPXNETSIZE256 256 | |||
114 | #define SUBNETLENGTHSIZE32 32 /*1-32 inc.*/ | |||
115 | ||||
116 | /* hash table used for IPv4 lookup */ | |||
117 | ||||
118 | #define HASH_IPV4_ADDRESS(addr)((((((guint32) ( (((guint32) (addr) & (guint32) 0x000000ffU ) << 24) | (((guint32) (addr) & (guint32) 0x0000ff00U ) << 8) | (((guint32) (addr) & (guint32) 0x00ff0000U ) >> 8) | (((guint32) (addr) & (guint32) 0xff000000U ) >> 24)))))) & (2048 - 1)) (g_htonl(addr)(((((guint32) ( (((guint32) (addr) & (guint32) 0x000000ffU ) << 24) | (((guint32) (addr) & (guint32) 0x0000ff00U ) << 8) | (((guint32) (addr) & (guint32) 0x00ff0000U ) >> 8) | (((guint32) (addr) & (guint32) 0xff000000U ) >> 24)))))) & (HASHHOSTSIZE2048 - 1)) | |||
119 | ||||
120 | ||||
121 | typedef struct sub_net_hashipv4 { | |||
122 | unsigned addr; | |||
123 | /* XXX: No longer needed?*/ | |||
124 | uint8_t flags; /* B0 dummy_entry, B1 resolve, B2 If the address is used in the trace */ | |||
125 | struct sub_net_hashipv4 *next; | |||
126 | char name[MAXNAMELEN64]; | |||
127 | } sub_net_hashipv4_t; | |||
128 | ||||
129 | /* Array of entries of subnets of different lengths */ | |||
130 | typedef struct { | |||
131 | size_t mask_length; /*1-32*/ | |||
132 | uint32_t mask; /* e.g. 255.255.255.*/ | |||
133 | sub_net_hashipv4_t** subnet_addresses; /* Hash table of subnet addresses */ | |||
134 | } subnet_length_entry_t; | |||
135 | ||||
136 | ||||
137 | /* hash table used for IPX network lookup */ | |||
138 | ||||
139 | /* XXX - check goodness of hash function */ | |||
140 | ||||
141 | #define HASH_IPX_NET(net)((net) & (256 - 1)) ((net) & (HASHIPXNETSIZE256 - 1)) | |||
142 | ||||
143 | typedef struct hashipxnet { | |||
144 | unsigned addr; | |||
145 | struct hashipxnet *next; | |||
146 | char name[MAXNAMELEN64]; | |||
147 | } hashipxnet_t; | |||
148 | ||||
149 | typedef struct hashvlan { | |||
150 | unsigned id; | |||
151 | /* struct hashvlan *next; */ | |||
152 | char name[MAXVLANNAMELEN128]; | |||
153 | } hashvlan_t; | |||
154 | ||||
155 | typedef struct ss7pc { | |||
156 | uint32_t id; /* 1st byte NI, 3 following bytes: Point Code */ | |||
157 | char pc_addr[MAXNAMELEN64]; | |||
158 | char name[MAXNAMELEN64]; | |||
159 | } hashss7pc_t; | |||
160 | ||||
161 | /* hash tables used for ethernet and manufacturer lookup */ | |||
162 | struct hashether { | |||
163 | uint8_t flags; /* (See above) */ | |||
164 | uint8_t addr[6]; | |||
165 | char hexaddr[6*3]; | |||
166 | char resolved_name[MAXNAMELEN64]; | |||
167 | }; | |||
168 | ||||
169 | struct hasheui64 { | |||
170 | uint8_t flags; /* (See above) */ | |||
171 | uint8_t addr[EUI64_ADDR_LEN8]; | |||
172 | char hexaddr[EUI64_ADDR_LEN8*3]; | |||
173 | char resolved_name[MAXNAMELEN64]; | |||
174 | }; | |||
175 | ||||
176 | struct hashwka { | |||
177 | uint8_t flags; /* (See above) */ | |||
178 | char* name; | |||
179 | }; | |||
180 | ||||
181 | struct hashmanuf { | |||
182 | uint8_t flags; /* (See above) */ | |||
183 | uint8_t addr[3]; | |||
184 | char hexaddr[3*3]; | |||
185 | char resolved_name[MAXNAMELEN64]; | |||
186 | char resolved_longname[MAXNAMELEN64]; | |||
187 | }; | |||
188 | ||||
189 | /* internal type used when reading ethers file (or wka, manuf) */ | |||
190 | typedef struct _ether | |||
191 | { | |||
192 | uint8_t addr[8]; | |||
193 | char name[MAXNAMELEN64]; | |||
194 | char longname[MAXNAMELEN64]; | |||
195 | } ether_t; | |||
196 | ||||
197 | /* internal ipxnet type */ | |||
198 | typedef struct _ipxnet | |||
199 | { | |||
200 | unsigned addr; | |||
201 | char name[MAXNAMELEN64]; | |||
202 | } ipxnet_t; | |||
203 | ||||
204 | /* internal vlan type */ | |||
205 | typedef struct _vlan | |||
206 | { | |||
207 | unsigned id; | |||
208 | char name[MAXVLANNAMELEN128]; | |||
209 | } vlan_t; | |||
210 | ||||
211 | static wmem_allocator_t *addr_resolv_scope; | |||
212 | ||||
213 | // Maps unsigned -> hashipxnet_t* | |||
214 | static wmem_map_t *ipxnet_hash_table; | |||
215 | static wmem_map_t *ipv4_hash_table; | |||
216 | static wmem_map_t *ipv6_hash_table; | |||
217 | // Maps unsigned -> hashvlan_t* | |||
218 | static wmem_map_t *vlan_hash_table; | |||
219 | static wmem_map_t *ss7pc_hash_table; | |||
220 | ||||
221 | // Maps IP address -> manually set hostname. | |||
222 | static wmem_map_t *manually_resolved_ipv4_list; | |||
223 | static wmem_map_t *manually_resolved_ipv6_list; | |||
224 | ||||
225 | static addrinfo_lists_t addrinfo_lists; | |||
226 | ||||
227 | struct cb_serv_data { | |||
228 | char *service; | |||
229 | port_type proto; | |||
230 | }; | |||
231 | ||||
232 | // Maps unsigned -> hashmanuf_t* | |||
233 | // XXX: Note that hashmanuf_t* only accommodates 24-bit OUIs. | |||
234 | // We might want to store vendor names from MA-M and MA-S to | |||
235 | // present in the Resolved Addresses dialog. | |||
236 | static wmem_map_t *manuf_hashtable; | |||
237 | // Maps address -> hashwka_t* | |||
238 | static wmem_map_t *wka_hashtable; | |||
239 | // Maps address -> hashether_t* | |||
240 | static wmem_map_t *eth_hashtable; | |||
241 | // Maps address -> hasheui64_t* | |||
242 | static wmem_map_t *eui64_hashtable; | |||
243 | // Maps unsigned -> serv_port_t* | |||
244 | static wmem_map_t *serv_port_hashtable; | |||
245 | static wmem_map_t *serv_port_custom_hashtable; | |||
246 | ||||
247 | // Maps enterprise-id -> enterprise-desc (only used for user additions) | |||
248 | static GHashTable *enterprises_hashtable; | |||
249 | ||||
250 | static subnet_length_entry_t subnet_length_entries[SUBNETLENGTHSIZE32]; /* Ordered array of entries */ | |||
251 | static bool_Bool have_subnet_entry; | |||
252 | ||||
253 | static bool_Bool new_resolved_objects; | |||
254 | ||||
255 | static GPtrArray* extra_hosts_files; | |||
256 | ||||
257 | static hashether_t *add_eth_name(const uint8_t *addr, const char *name, bool_Bool static_entry); | |||
258 | static hasheui64_t *add_eui64_name(const uint8_t *addr, const char *name, bool_Bool static_entry); | |||
259 | static void add_serv_port_cb(const uint32_t port, void *ptr); | |||
260 | ||||
261 | /* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx#existing | |||
262 | * One-at-a-Time hash | |||
263 | */ | |||
264 | unsigned | |||
265 | ipv6_oat_hash(const void *key) | |||
266 | { | |||
267 | int len = 16; | |||
268 | const unsigned char *p = (const unsigned char *)key; | |||
269 | unsigned h = 0; | |||
270 | int i; | |||
271 | ||||
272 | for ( i = 0; i < len; i++ ) { | |||
273 | h += p[i]; | |||
274 | h += ( h << 10 ); | |||
275 | h ^= ( h >> 6 ); | |||
276 | } | |||
277 | ||||
278 | h += ( h << 3 ); | |||
279 | h ^= ( h >> 11 ); | |||
280 | h += ( h << 15 ); | |||
281 | ||||
282 | return h; | |||
283 | } | |||
284 | ||||
285 | unsigned | |||
286 | ws_ipv6_hash(const void* key) | |||
287 | { | |||
288 | #ifdef HAVE_XXHASH1 | |||
289 | return wmem_strong_hash(key, 16); | |||
290 | #else | |||
291 | return ipv6_oat_hash(key); | |||
292 | #endif | |||
293 | } | |||
294 | ||||
295 | gboolean | |||
296 | ipv6_equal(const void *v1, const void *v2) | |||
297 | { | |||
298 | ||||
299 | if (memcmp(v1, v2, sizeof (ws_in6_addr)) == 0) { | |||
300 | return true1; | |||
301 | } | |||
302 | ||||
303 | return false0; | |||
304 | } | |||
305 | ||||
306 | /* | |||
307 | * Flag controlling what names to resolve. | |||
308 | */ | |||
309 | e_addr_resolve gbl_resolv_flags = { | |||
310 | true1, /* mac_name */ | |||
311 | false0, /* network_name */ | |||
312 | false0, /* transport_name */ | |||
313 | true1, /* dns_pkt_addr_resolution */ | |||
314 | false0, /* handshake_sni_addr_resolution */ | |||
315 | true1, /* use_external_net_name_resolver */ | |||
316 | false0, /* vlan_name */ | |||
317 | false0, /* ss7 point code names */ | |||
318 | true1, /* maxmind_geoip */ | |||
319 | }; | |||
320 | ||||
321 | /* XXX - ares_init_options(3) says: | |||
322 | * "The recommended concurrent query limit is about 32k queries" | |||
323 | */ | |||
324 | static unsigned name_resolve_concurrency = 500; | |||
325 | static bool_Bool resolve_synchronously; | |||
326 | ||||
327 | /* | |||
328 | * Global variables (can be changed in GUI sections) | |||
329 | * XXX - they could be changed in GUI code, but there's currently no | |||
330 | * GUI code to change them. | |||
331 | */ | |||
332 | ||||
333 | char *g_ethers_path; /* global ethers file */ | |||
334 | char *g_pethers_path; /* personal ethers file */ | |||
335 | char *g_wka_path; /* global well-known-addresses file */ | |||
336 | char *g_manuf_path; /* global manuf file */ | |||
337 | char *g_pmanuf_path; /* personal manuf file */ | |||
338 | char *g_ipxnets_path; /* global ipxnets file */ | |||
339 | char *g_pipxnets_path; /* personal ipxnets file */ | |||
340 | char *g_services_path; /* global services file */ | |||
341 | char *g_pservices_path; /* personal services file */ | |||
342 | char *g_pvlan_path; /* personal vlans file */ | |||
343 | char *g_ss7pcs_path; /* personal ss7pcs file */ | |||
344 | char *g_enterprises_path; /* global enterprises file */ | |||
345 | char *g_penterprises_path; /* personal enterprises file */ | |||
346 | /* first resolving call */ | |||
347 | ||||
348 | /* | |||
349 | * Submitted asynchronous queries trigger a callback (c_ares_ghba_cb()). | |||
350 | * Queries are added to c_ares_queue_head. During processing, queries are | |||
351 | * popped off the front of c_ares_queue_head and submitted using | |||
352 | * ares_gethostbyaddr(). | |||
353 | * The callback processes the response, then frees the request. | |||
354 | */ | |||
355 | typedef struct _async_dns_queue_msg | |||
356 | { | |||
357 | union { | |||
358 | uint32_t ip4; | |||
359 | ws_in6_addr ip6; | |||
360 | } addr; | |||
361 | int family; | |||
362 | } async_dns_queue_msg_t; | |||
363 | ||||
364 | typedef struct _async_hostent { | |||
365 | int addr_size; | |||
366 | int copied; | |||
367 | void *addrp; | |||
368 | } async_hostent_t; | |||
369 | ||||
370 | static void | |||
371 | c_ares_ghba_cb(void *arg, int status, int timeouts _U___attribute__((unused)), struct hostent *he); | |||
372 | ||||
373 | /* | |||
374 | * Submitted synchronous queries trigger a callback (c_ares_ghba_sync_cb()). | |||
375 | * The callback processes the response, sets completed to true if | |||
376 | * completed is non-NULL, then frees the request. | |||
377 | */ | |||
378 | typedef struct _sync_dns_data | |||
379 | { | |||
380 | union { | |||
381 | uint32_t ip4; | |||
382 | ws_in6_addr ip6; | |||
383 | } addr; | |||
384 | int family; | |||
385 | bool_Bool *completed; | |||
386 | } sync_dns_data_t; | |||
387 | ||||
388 | static ares_channel ghba_chan; /* ares_gethostbyaddr -- Usually non-interactive, no timeout */ | |||
389 | static ares_channel ghbn_chan; /* ares_gethostbyname -- Usually interactive, timeout */ | |||
390 | ||||
391 | static bool_Bool async_dns_initialized; | |||
392 | static unsigned async_dns_in_flight; | |||
393 | static wmem_list_t *async_dns_queue_head; | |||
394 | static GMutex async_dns_queue_mtx; | |||
395 | ||||
396 | //UAT for providing a list of DNS servers to C-ARES for name resolution | |||
397 | bool_Bool use_custom_dns_server_list; | |||
398 | struct dns_server_data { | |||
399 | char *ipaddr; | |||
400 | uint32_t udp_port; | |||
401 | uint32_t tcp_port; | |||
402 | }; | |||
403 | ||||
404 | UAT_CSTRING_CB_DEF(dnsserverlist_uats, ipaddr, struct dns_server_data)static void dnsserverlist_uats_ipaddr_set_cb(void* rec, const char* buf, unsigned len, const void* u1 __attribute__((unused )), const void* u2 __attribute__((unused))) { char* new_buf = g_strndup(buf,len); g_free((((struct dns_server_data*)rec)-> ipaddr)); (((struct dns_server_data*)rec)->ipaddr) = new_buf ; } static void dnsserverlist_uats_ipaddr_tostr_cb(void* rec, char** out_ptr, unsigned* out_len, const void* u1 __attribute__ ((unused)), const void* u2 __attribute__((unused))) { if (((struct dns_server_data*)rec)->ipaddr ) { *out_ptr = g_strdup_inline ((((struct dns_server_data*)rec)->ipaddr)); *out_len = (unsigned )strlen((((struct dns_server_data*)rec)->ipaddr)); } else { *out_ptr = g_strdup_inline (""); *out_len = 0; } } | |||
405 | UAT_DEC_CB_DEF(dnsserverlist_uats, tcp_port, struct dns_server_data)static void dnsserverlist_uats_tcp_port_set_cb(void* rec, const char* buf, unsigned len, const void* u1 __attribute__((unused )), const void* u2 __attribute__((unused))) { char* tmp_str = g_strndup(buf,len); ws_strtou32(tmp_str, ((void*)0), &(( struct dns_server_data*)rec)->tcp_port); g_free(tmp_str); } static void dnsserverlist_uats_tcp_port_tostr_cb(void* rec, char ** out_ptr, unsigned* out_len, const void* u1 __attribute__(( unused)), const void* u2 __attribute__((unused))) { *out_ptr = wmem_strdup_printf(((void*)0), "%u",((struct dns_server_data *)rec)->tcp_port); *out_len = (unsigned)strlen(*out_ptr); } | |||
406 | UAT_DEC_CB_DEF(dnsserverlist_uats, udp_port, struct dns_server_data)static void dnsserverlist_uats_udp_port_set_cb(void* rec, const char* buf, unsigned len, const void* u1 __attribute__((unused )), const void* u2 __attribute__((unused))) { char* tmp_str = g_strndup(buf,len); ws_strtou32(tmp_str, ((void*)0), &(( struct dns_server_data*)rec)->udp_port); g_free(tmp_str); } static void dnsserverlist_uats_udp_port_tostr_cb(void* rec, char ** out_ptr, unsigned* out_len, const void* u1 __attribute__(( unused)), const void* u2 __attribute__((unused))) { *out_ptr = wmem_strdup_printf(((void*)0), "%u",((struct dns_server_data *)rec)->udp_port); *out_len = (unsigned)strlen(*out_ptr); } | |||
407 | ||||
408 | static uat_t *dnsserver_uat; | |||
409 | static struct dns_server_data *dnsserverlist_uats; | |||
410 | static unsigned ndnsservers; | |||
411 | ||||
412 | static void | |||
413 | dns_server_free_cb(void *data) | |||
414 | { | |||
415 | struct dns_server_data *h = (struct dns_server_data*)data; | |||
416 | ||||
417 | g_free(h->ipaddr); | |||
418 | } | |||
419 | ||||
420 | static void* | |||
421 | dns_server_copy_cb(void *dst_, const void *src_, size_t len _U___attribute__((unused))) | |||
422 | { | |||
423 | const struct dns_server_data *src = (const struct dns_server_data *)src_; | |||
424 | struct dns_server_data *dst = (struct dns_server_data *)dst_; | |||
425 | ||||
426 | dst->ipaddr = g_strdup(src->ipaddr)g_strdup_inline (src->ipaddr); | |||
427 | dst->udp_port = src->udp_port; | |||
428 | dst->tcp_port = src->tcp_port; | |||
429 | ||||
430 | return dst; | |||
431 | } | |||
432 | ||||
433 | static bool_Bool | |||
434 | dnsserver_uat_fld_ip_chk_cb(void* r _U___attribute__((unused)), const char* ipaddr, unsigned len _U___attribute__((unused)), const void* u1 _U___attribute__((unused)), const void* u2 _U___attribute__((unused)), char** err) | |||
435 | { | |||
436 | //Check for a valid IPv4 or IPv6 address. | |||
437 | if (ipaddr && g_hostname_is_ip_address(ipaddr)) { | |||
438 | *err = NULL((void*)0); | |||
439 | return true1; | |||
440 | } | |||
441 | ||||
442 | *err = ws_strdup_printf("No valid IP address given.")wmem_strdup_printf(((void*)0), "No valid IP address given."); | |||
443 | return false0; | |||
444 | } | |||
445 | ||||
446 | static bool_Bool | |||
447 | dnsserver_uat_fld_port_chk_cb(void* r _U___attribute__((unused)), const char* p, unsigned len _U___attribute__((unused)), const void* u1 _U___attribute__((unused)), const void* u2 _U___attribute__((unused)), char** err) | |||
448 | { | |||
449 | if (!p || strlen(p) == 0u) { | |||
450 | // This should be removed in favor of Decode As. Make it optional. | |||
451 | *err = NULL((void*)0); | |||
452 | return true1; | |||
453 | } | |||
454 | ||||
455 | if (strcmp(p, "53") != 0){ | |||
456 | uint16_t port; | |||
457 | if (!ws_strtou16(p, NULL((void*)0), &port)) { | |||
458 | *err = g_strdup("Invalid port given.")g_strdup_inline ("Invalid port given."); | |||
459 | return false0; | |||
460 | } | |||
461 | } | |||
462 | ||||
463 | *err = NULL((void*)0); | |||
464 | return true1; | |||
465 | } | |||
466 | ||||
467 | static void | |||
468 | c_ares_ghba_sync_cb(void *arg, int status, int timeouts _U___attribute__((unused)), struct hostent *he) { | |||
469 | sync_dns_data_t *sdd = (sync_dns_data_t *)arg; | |||
470 | char **p; | |||
471 | ||||
472 | if (status == ARES_SUCCESS) { | |||
473 | for (p = he->h_addr_list; *p != NULL((void*)0); p++) { | |||
474 | switch(sdd->family) { | |||
475 | case AF_INET2: | |||
476 | add_ipv4_name(sdd->addr.ip4, he->h_name, false0); | |||
477 | break; | |||
478 | case AF_INET610: | |||
479 | add_ipv6_name(&sdd->addr.ip6, he->h_name, false0); | |||
480 | break; | |||
481 | default: | |||
482 | /* Throw an exception? */ | |||
483 | break; | |||
484 | } | |||
485 | } | |||
486 | ||||
487 | } | |||
488 | ||||
489 | /* | |||
490 | * Let our caller know that this is complete. | |||
491 | */ | |||
492 | *sdd->completed = true1; | |||
493 | ||||
494 | /* | |||
495 | * Free the structure for this call. | |||
496 | */ | |||
497 | g_free(sdd); | |||
498 | } | |||
499 | ||||
500 | static void | |||
501 | wait_for_sync_resolv(bool_Bool *completed) { | |||
502 | int nfds; | |||
503 | fd_set rfds, wfds; | |||
504 | struct timeval tv; | |||
505 | ||||
506 | while (!*completed) { | |||
507 | /* | |||
508 | * Not yet resolved; wait for something to show up on the | |||
509 | * address-to-name C-ARES channel. | |||
510 | * | |||
511 | * To quote the source code for ares_timeout() as of C-ARES | |||
512 | * 1.12.0, "WARNING: Beware that this is linear in the number | |||
513 | * of outstanding requests! You are probably far better off | |||
514 | * just calling ares_process() once per second, rather than | |||
515 | * calling ares_timeout() to figure out when to next call | |||
516 | * ares_process().", although we should have only one request | |||
517 | * outstanding. | |||
518 | * As of C-ARES 1.20.0, the ares_timeout() function is now O(1), | |||
519 | * but we don't require that minimum version. | |||
520 | * https://github.com/c-ares/c-ares/commit/cf99c025cfb3e21295b59923876a31a68ea2cb4b | |||
521 | * | |||
522 | * And, yes, we have to reset it each time, as select(), in | |||
523 | * some OSes modifies the timeout to reflect the time remaining | |||
524 | * (e.g., Linux) and select() in other OSes doesn't (most if not | |||
525 | * all other UN*Xes, Windows?), so we can't rely on *either* | |||
526 | * behavior. | |||
527 | */ | |||
528 | tv.tv_sec = 1; | |||
529 | tv.tv_usec = 0; | |||
530 | ||||
531 | FD_ZERO(&rfds)do { unsigned int __i; fd_set *__arr = (&rfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
532 | FD_ZERO(&wfds)do { unsigned int __i; fd_set *__arr = (&wfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
533 | nfds = ares_fds(ghba_chan, &rfds, &wfds); | |||
534 | if (nfds > 0) { | |||
535 | if (select(nfds, &rfds, &wfds, NULL((void*)0), &tv) == -1) { /* call to select() failed */ | |||
536 | /* If it's interrupted by a signal, no need to put out a message */ | |||
537 | if (errno(*__errno_location ()) != EINTR4) | |||
538 | fprintf(stderrstderr, "Warning: call to select() failed, error is %s\n", g_strerror(errno(*__errno_location ()))); | |||
539 | return; | |||
540 | } | |||
541 | ares_process(ghba_chan, &rfds, &wfds); | |||
542 | } | |||
543 | } | |||
544 | } | |||
545 | ||||
546 | static void | |||
547 | process_async_dns_queue(void) | |||
548 | { | |||
549 | wmem_list_frame_t* head; | |||
550 | async_dns_queue_msg_t *caqm; | |||
551 | ||||
552 | if (async_dns_queue_head == NULL((void*)0)) | |||
553 | return; | |||
554 | ||||
555 | if (!g_mutex_trylock(&async_dns_queue_mtx)) | |||
556 | return; | |||
557 | ||||
558 | head = wmem_list_head(async_dns_queue_head); | |||
559 | ||||
560 | while (head != NULL((void*)0) && async_dns_in_flight <= name_resolve_concurrency) { | |||
561 | caqm = (async_dns_queue_msg_t *)wmem_list_frame_data(head); | |||
562 | wmem_list_remove_frame(async_dns_queue_head, head); | |||
563 | if (caqm->family == AF_INET2) { | |||
564 | ares_gethostbyaddr(ghba_chan, &caqm->addr.ip4, sizeof(uint32_t), AF_INET2, | |||
565 | c_ares_ghba_cb, caqm); | |||
566 | async_dns_in_flight++; | |||
567 | } else if (caqm->family == AF_INET610) { | |||
568 | ares_gethostbyaddr(ghba_chan, &caqm->addr.ip6, sizeof(ws_in6_addr), | |||
569 | AF_INET610, c_ares_ghba_cb, caqm); | |||
570 | async_dns_in_flight++; | |||
571 | } | |||
572 | ||||
573 | head = wmem_list_head(async_dns_queue_head); | |||
574 | } | |||
575 | ||||
576 | g_mutex_unlock(&async_dns_queue_mtx); | |||
577 | } | |||
578 | ||||
579 | static void | |||
580 | wait_for_async_queue(void) | |||
581 | { | |||
582 | struct timeval tv = { 0, 0 }; | |||
583 | int nfds; | |||
584 | fd_set rfds, wfds; | |||
585 | ||||
586 | new_resolved_objects = false0; | |||
587 | ||||
588 | if (!async_dns_initialized) { | |||
589 | maxmind_db_lookup_process(); | |||
590 | return; | |||
591 | } | |||
592 | ||||
593 | while (1) { | |||
594 | /* We're switching to synchronous lookups, so process anything in | |||
595 | * the asynchronous queue. There might be more in the queue than | |||
596 | * name_resolve_concurrency allows, so check each cycle. | |||
597 | */ | |||
598 | process_async_dns_queue(); | |||
599 | ||||
600 | FD_ZERO(&rfds)do { unsigned int __i; fd_set *__arr = (&rfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
601 | FD_ZERO(&wfds)do { unsigned int __i; fd_set *__arr = (&wfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
602 | nfds = ares_fds(ghba_chan, &rfds, &wfds); | |||
603 | if (nfds == 0) { | |||
604 | /* No more requests waiting for reply; we're done here. */ | |||
605 | break; | |||
606 | } | |||
607 | ||||
608 | /* See comment in wait_for_sync_resolv() about ares_timeout() being | |||
609 | * O(N) in the number of outstanding requests until c-ares 1.20, and | |||
610 | * why we might as well just set a 1 second to select(). | |||
611 | */ | |||
612 | tv.tv_sec = 1; | |||
613 | tv.tv_usec = 0; | |||
614 | ||||
615 | if (select(nfds, &rfds, &wfds, NULL((void*)0), &tv) == -1) { /* call to select() failed */ | |||
616 | /* If it's interrupted by a signal, no need to put out a message */ | |||
617 | if (errno(*__errno_location ()) != EINTR4) | |||
618 | fprintf(stderrstderr, "Warning: call to select() failed, error is %s\n", g_strerror(errno(*__errno_location ()))); | |||
619 | return; | |||
620 | } | |||
621 | ares_process(ghba_chan, &rfds, &wfds); | |||
622 | } | |||
623 | ||||
624 | maxmind_db_lookup_process(); | |||
625 | return; | |||
626 | } | |||
627 | ||||
628 | static void | |||
629 | sync_lookup_ip4(const uint32_t addr) | |||
630 | { | |||
631 | bool_Bool completed = false0; | |||
632 | sync_dns_data_t *sdd; | |||
633 | ||||
634 | if (!async_dns_initialized) { | |||
635 | /* | |||
636 | * c-ares not initialized. Bail out. | |||
637 | */ | |||
638 | return; | |||
639 | } | |||
640 | ||||
641 | /* | |||
642 | * Start the request. | |||
643 | */ | |||
644 | sdd = g_new(sync_dns_data_t, 1)((sync_dns_data_t *) g_malloc_n ((1), sizeof (sync_dns_data_t ))); | |||
645 | sdd->family = AF_INET2; | |||
646 | sdd->addr.ip4 = addr; | |||
647 | sdd->completed = &completed; | |||
648 | ares_gethostbyaddr(ghba_chan, &addr, sizeof(uint32_t), AF_INET2, | |||
649 | c_ares_ghba_sync_cb, sdd); | |||
650 | ||||
651 | /* | |||
652 | * Now wait for it to finish. | |||
653 | */ | |||
654 | wait_for_sync_resolv(&completed); | |||
655 | } | |||
656 | ||||
657 | static void | |||
658 | sync_lookup_ip6(const ws_in6_addr *addrp) | |||
659 | { | |||
660 | bool_Bool completed = false0; | |||
661 | sync_dns_data_t *sdd; | |||
662 | ||||
663 | if (!async_dns_initialized) { | |||
664 | /* | |||
665 | * c-ares not initialized. Bail out. | |||
666 | */ | |||
667 | return; | |||
668 | } | |||
669 | ||||
670 | /* | |||
671 | * Start the request. | |||
672 | */ | |||
673 | sdd = g_new(sync_dns_data_t, 1)((sync_dns_data_t *) g_malloc_n ((1), sizeof (sync_dns_data_t ))); | |||
674 | sdd->family = AF_INET610; | |||
675 | memcpy(&sdd->addr.ip6, addrp, sizeof(sdd->addr.ip6)); | |||
676 | sdd->completed = &completed; | |||
677 | ares_gethostbyaddr(ghba_chan, addrp, sizeof(ws_in6_addr), AF_INET610, | |||
678 | c_ares_ghba_sync_cb, sdd); | |||
679 | ||||
680 | /* | |||
681 | * Now wait for it to finish. | |||
682 | */ | |||
683 | wait_for_sync_resolv(&completed); | |||
684 | } | |||
685 | ||||
686 | void | |||
687 | set_resolution_synchrony(bool_Bool synchronous) | |||
688 | { | |||
689 | resolve_synchronously = synchronous; | |||
690 | maxmind_db_set_synchrony(synchronous); | |||
691 | ||||
692 | if (synchronous) { | |||
693 | wait_for_async_queue(); | |||
694 | } | |||
695 | } | |||
696 | ||||
697 | static void | |||
698 | c_ares_set_dns_servers(void) | |||
699 | { | |||
700 | if ((!async_dns_initialized) || (!use_custom_dns_server_list)) | |||
701 | return; | |||
702 | ||||
703 | if (ndnsservers == 0) { | |||
704 | //clear the list of servers. This may effectively disable name resolution | |||
705 | ares_set_servers_ports(ghba_chan, NULL((void*)0)); | |||
706 | ares_set_servers_ports(ghbn_chan, NULL((void*)0)); | |||
707 | } else { | |||
708 | struct ares_addr_port_node* servers = wmem_alloc_array(NULL, struct ares_addr_port_node, ndnsservers)((struct ares_addr_port_node*)wmem_alloc((((void*)0)), (((((ndnsservers )) <= 0) || ((size_t)sizeof(struct ares_addr_port_node) > (9223372036854775807L / (size_t)((ndnsservers))))) ? 0 : (sizeof (struct ares_addr_port_node) * ((ndnsservers)))))); | |||
709 | ws_in4_addr ipv4addr; | |||
710 | ws_in6_addr ipv6addr; | |||
711 | bool_Bool invalid_IP_found = false0; | |||
712 | struct ares_addr_port_node* server; | |||
713 | unsigned i; | |||
714 | for (i = 0, server = servers; i < ndnsservers-1; i++, server++) { | |||
715 | if (ws_inet_pton6(dnsserverlist_uats[i].ipaddr, &ipv6addr)) { | |||
716 | server->family = AF_INET610; | |||
717 | memcpy(&server->addr.addr6, &ipv6addr, 16); | |||
718 | } else if (ws_inet_pton4(dnsserverlist_uats[i].ipaddr, &ipv4addr)) { | |||
719 | server->family = AF_INET2; | |||
720 | memcpy(&server->addr.addr4, &ipv4addr, 4); | |||
721 | } else { | |||
722 | //This shouldn't happen, but just in case... | |||
723 | invalid_IP_found = true1; | |||
724 | server->family = 0; | |||
725 | memset(&server->addr.addr4, 0, 4); | |||
726 | break; | |||
727 | } | |||
728 | ||||
729 | server->udp_port = (int)dnsserverlist_uats[i].udp_port; | |||
730 | server->tcp_port = (int)dnsserverlist_uats[i].tcp_port; | |||
731 | ||||
732 | server->next = (server+1); | |||
733 | } | |||
734 | if (!invalid_IP_found) { | |||
735 | if (ws_inet_pton6(dnsserverlist_uats[i].ipaddr, &ipv6addr)) { | |||
736 | server->family = AF_INET610; | |||
737 | memcpy(&server->addr.addr6, &ipv6addr, 16); | |||
738 | } | |||
739 | else if (ws_inet_pton4(dnsserverlist_uats[i].ipaddr, &ipv4addr)) { | |||
740 | server->family = AF_INET2; | |||
741 | memcpy(&server->addr.addr4, &ipv4addr, 4); | |||
742 | } else { | |||
743 | //This shouldn't happen, but just in case... | |||
744 | server->family = 0; | |||
745 | memset(&server->addr.addr4, 0, 4); | |||
746 | } | |||
747 | } | |||
748 | server->udp_port = (int)dnsserverlist_uats[i].udp_port; | |||
749 | server->tcp_port = (int)dnsserverlist_uats[i].tcp_port; | |||
750 | ||||
751 | server->next = NULL((void*)0); | |||
752 | ||||
753 | ares_set_servers_ports(ghba_chan, servers); | |||
754 | ares_set_servers_ports(ghbn_chan, servers); | |||
755 | wmem_free(NULL((void*)0), servers); | |||
756 | } | |||
757 | } | |||
758 | ||||
759 | typedef struct { | |||
760 | uint32_t mask; | |||
761 | size_t mask_length; | |||
762 | const char* name; /* Shallow copy */ | |||
763 | } subnet_entry_t; | |||
764 | ||||
765 | /* Maximum supported line length of hosts, services, manuf, etc. */ | |||
766 | #define MAX_LINELEN1024 1024 | |||
767 | ||||
768 | /** Read a line without trailing (CR)LF. Returns -1 on failure. */ | |||
769 | static int | |||
770 | fgetline(char *buf, int size, FILE *fp) | |||
771 | { | |||
772 | if (fgets(buf, size, fp)) { | |||
| ||||
773 | int len = (int)strcspn(buf, "\r\n"); | |||
774 | buf[len] = '\0'; | |||
775 | return len; | |||
776 | } | |||
777 | return -1; | |||
778 | ||||
779 | } /* fgetline */ | |||
780 | ||||
781 | ||||
782 | /* | |||
783 | * Local function definitions | |||
784 | */ | |||
785 | static subnet_entry_t subnet_lookup(const uint32_t addr); | |||
786 | static void subnet_entry_set(uint32_t subnet_addr, const uint8_t mask_length, const char* name); | |||
787 | ||||
788 | static unsigned serv_port_custom_hash(const void *k) | |||
789 | { | |||
790 | const serv_port_key_t *key = (const serv_port_key_t*)k; | |||
791 | return key->port + (key->type << 16); | |||
792 | } | |||
793 | ||||
794 | static gboolean serv_port_custom_equal(const void *k1, const void *k2) | |||
795 | { | |||
796 | const serv_port_key_t *key1 = (const serv_port_key_t*)k1; | |||
797 | const serv_port_key_t *key2 = (const serv_port_key_t*)k2; | |||
798 | ||||
799 | return (key1->port == key2->port) && (key1->type == key2->type); | |||
800 | } | |||
801 | ||||
802 | static void | |||
803 | add_custom_service_name(port_type proto, const unsigned port, const char *service_name) | |||
804 | { | |||
805 | char *name; | |||
806 | serv_port_key_t *key, *orig_key; | |||
807 | ||||
808 | key = wmem_new(addr_resolv_scope, serv_port_key_t)((serv_port_key_t*)wmem_alloc((addr_resolv_scope), sizeof(serv_port_key_t ))); | |||
809 | key->port = (uint16_t)port; | |||
810 | key->type = proto; | |||
811 | ||||
812 | if (wmem_map_lookup_extended(serv_port_custom_hashtable, key, (const void**)&orig_key, (void**)&name)) { | |||
813 | wmem_free(addr_resolv_scope, orig_key); | |||
814 | wmem_free(addr_resolv_scope, name); | |||
815 | } | |||
816 | ||||
817 | name = wmem_strdup(addr_resolv_scope, service_name); | |||
818 | wmem_map_insert(serv_port_custom_hashtable, key, name); | |||
819 | ||||
820 | // A new custom entry is not a new resolved object. | |||
821 | // new_resolved_objects = true; | |||
822 | } | |||
823 | ||||
824 | static void | |||
825 | add_service_name(port_type proto, const unsigned port, const char *service_name) | |||
826 | { | |||
827 | serv_port_key_t *key = wmem_new(addr_resolv_scope, serv_port_key_t)((serv_port_key_t*)wmem_alloc((addr_resolv_scope), sizeof(serv_port_key_t ))); | |||
828 | key->port = (uint16_t)port; | |||
829 | key->type = proto; | |||
830 | ||||
831 | wmem_map_insert(serv_port_hashtable, key, (void*)service_name); | |||
832 | ||||
833 | new_resolved_objects = true1; | |||
834 | } | |||
835 | ||||
836 | static void | |||
837 | parse_service_line (char *line) | |||
838 | { | |||
839 | char *cp; | |||
840 | char *service; | |||
841 | char *port; | |||
842 | port_type proto; | |||
843 | struct cb_serv_data cb_data; | |||
844 | range_t *port_rng = NULL((void*)0); | |||
845 | ||||
846 | if ((cp = strchr(line, '#'))) | |||
847 | *cp = '\0'; | |||
848 | ||||
849 | if ((cp = strtok(line, " \t")) == NULL((void*)0)) | |||
850 | return; | |||
851 | ||||
852 | service = cp; | |||
853 | ||||
854 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
855 | return; | |||
856 | ||||
857 | port = cp; | |||
858 | ||||
859 | if (strtok(cp, "/") == NULL((void*)0)) | |||
860 | return; | |||
861 | ||||
862 | if (range_convert_str(NULL((void*)0), &port_rng, port, UINT16_MAX(65535)) != CVT_NO_ERROR) { | |||
863 | wmem_free (NULL((void*)0), port_rng); | |||
864 | return; | |||
865 | } | |||
866 | ||||
867 | while ((cp = strtok(NULL((void*)0), "/")) != NULL((void*)0)) { | |||
868 | if (strcmp(cp, "tcp") == 0) { | |||
869 | proto = PT_TCP; | |||
870 | } | |||
871 | else if (strcmp(cp, "udp") == 0) { | |||
872 | proto = PT_UDP; | |||
873 | } | |||
874 | else if (strcmp(cp, "sctp") == 0) { | |||
875 | proto = PT_SCTP; | |||
876 | } | |||
877 | else if (strcmp(cp, "dccp") == 0) { | |||
878 | proto = PT_DCCP; | |||
879 | } | |||
880 | else { | |||
881 | break; | |||
882 | } | |||
883 | cb_data.service = service; | |||
884 | cb_data.proto = proto; | |||
885 | range_foreach(port_rng, add_serv_port_cb, &cb_data); | |||
886 | } | |||
887 | ||||
888 | wmem_free (NULL((void*)0), port_rng); | |||
889 | } /* parse_service_line */ | |||
890 | ||||
891 | ||||
892 | static void | |||
893 | add_serv_port_cb(const uint32_t port, void *ptr) | |||
894 | { | |||
895 | struct cb_serv_data *cb_data = (struct cb_serv_data *)ptr; | |||
896 | ||||
897 | if ( port ) { | |||
898 | add_custom_service_name(cb_data->proto, port, cb_data->service); | |||
899 | } | |||
900 | } | |||
901 | ||||
902 | ||||
903 | static bool_Bool | |||
904 | parse_services_file(const char * path) | |||
905 | { | |||
906 | FILE *serv_p; | |||
907 | char buf[MAX_LINELEN1024]; | |||
908 | ||||
909 | /* services hash table initialization */ | |||
910 | serv_p = ws_fopenfopen(path, "r"); | |||
911 | ||||
912 | if (serv_p == NULL((void*)0)) | |||
913 | return false0; | |||
914 | ||||
915 | while (fgetline(buf, sizeof(buf), serv_p) >= 0) { | |||
916 | parse_service_line(buf); | |||
917 | } | |||
918 | ||||
919 | fclose(serv_p); | |||
920 | return true1; | |||
921 | } | |||
922 | ||||
923 | /* ----------------- | |||
924 | * unsigned integer to ascii | |||
925 | */ | |||
926 | static char * | |||
927 | wmem_utoa(wmem_allocator_t *allocator, unsigned port) | |||
928 | { | |||
929 | char *bp = (char *)wmem_alloc(allocator, MAXNAMELEN64); | |||
930 | ||||
931 | /* XXX, uint32_to_str() ? */ | |||
932 | uint32_to_str_buf(port, bp, MAXNAMELEN64); | |||
933 | return bp; | |||
934 | } | |||
935 | ||||
936 | static const char * | |||
937 | _serv_name_lookup(port_type proto, unsigned port) | |||
938 | { | |||
939 | const char* name = NULL((void*)0); | |||
940 | ws_services_proto_t p; | |||
941 | ws_services_entry_t const *serv; | |||
942 | ||||
943 | const serv_port_key_t custom_key = { (uint16_t)port, proto }; | |||
944 | /* Look in the cache. Use an extended lookup so we can distinguish a port | |||
945 | * we already tried but had no name from one we haven't tried. */ | |||
946 | if (!wmem_map_lookup_extended(serv_port_hashtable, &custom_key, NULL((void*)0), (void **)&name)) { | |||
947 | /* Try the user custom table */ | |||
948 | name = wmem_map_lookup(serv_port_custom_hashtable, &custom_key); | |||
949 | ||||
950 | if (name == NULL((void*)0)) { | |||
951 | /* now look in the global tables */ | |||
952 | bool_Bool valid_proto = true1; | |||
953 | switch(proto) { | |||
954 | case PT_TCP: p = ws_tcp; break; | |||
955 | case PT_UDP: p = ws_udp; break; | |||
956 | case PT_SCTP: p = ws_sctp; break; | |||
957 | case PT_DCCP: p = ws_dccp; break; | |||
958 | default: valid_proto = false0; | |||
959 | } | |||
960 | if (valid_proto) { | |||
961 | serv = global_services_lookup(port, p); | |||
962 | if (serv) { | |||
963 | name = serv->name; | |||
964 | } | |||
965 | } | |||
966 | } | |||
967 | ||||
968 | /* Cache result (even if NULL, so we can know we have no result.) */ | |||
969 | add_service_name(proto, port, name); | |||
970 | } | |||
971 | ||||
972 | return name; | |||
973 | } | |||
974 | ||||
975 | const char * | |||
976 | try_serv_name_lookup(port_type proto, unsigned port) | |||
977 | { | |||
978 | return (proto == PT_NONE) ? NULL((void*)0) : _serv_name_lookup(proto, port); | |||
979 | } | |||
980 | ||||
981 | const char * | |||
982 | serv_name_lookup(port_type proto, unsigned port) | |||
983 | { | |||
984 | const char *name; | |||
985 | ||||
986 | /* first look for the name */ | |||
987 | name = _serv_name_lookup(proto, port); | |||
988 | if (name != NULL((void*)0)) | |||
989 | return name; | |||
990 | ||||
991 | /* No resolved name. Do we have a cached numeric string? */ | |||
992 | const serv_port_key_t key = { (uint16_t)port, PT_NONE }; | |||
993 | name = (const char*)wmem_map_lookup(serv_port_hashtable, &key); | |||
994 | /* No name; create the numeric string. */ | |||
995 | if (name == NULL((void*)0)) { | |||
996 | name = wmem_strdup_printf(addr_resolv_scope, "%u", port); | |||
997 | add_service_name(PT_NONE, port, name); | |||
998 | } | |||
999 | ||||
1000 | return name; | |||
1001 | } | |||
1002 | ||||
1003 | static void | |||
1004 | initialize_services(void) | |||
1005 | { | |||
1006 | ws_assert(serv_port_hashtable == NULL)do { if ((1) && !(serv_port_hashtable == ((void*)0))) ws_log_fatal_full("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1006, __func__, "assertion failed: %s", "serv_port_hashtable == ((void*)0)" ); } while (0); | |||
1007 | serv_port_hashtable = wmem_map_new(addr_resolv_scope, serv_port_custom_hash, serv_port_custom_equal); | |||
1008 | ws_assert(serv_port_custom_hashtable == NULL)do { if ((1) && !(serv_port_custom_hashtable == ((void *)0))) ws_log_fatal_full("", LOG_LEVEL_ERROR, "epan/addr_resolv.c" , 1008, __func__, "assertion failed: %s", "serv_port_custom_hashtable == ((void*)0)" ); } while (0); | |||
1009 | serv_port_custom_hashtable = wmem_map_new(addr_resolv_scope, serv_port_custom_hash, serv_port_custom_equal); | |||
1010 | ||||
1011 | /* Compute the pathname of the global services file. */ | |||
1012 | if (g_services_path == NULL((void*)0)) { | |||
1013 | g_services_path = get_datafile_path(ENAME_SERVICES"services"); | |||
1014 | } | |||
1015 | parse_services_file(g_services_path); | |||
1016 | ||||
1017 | /* Compute the pathname of the personal services file */ | |||
1018 | if (g_pservices_path == NULL((void*)0)) { | |||
1019 | /* Check profile directory before personal configuration */ | |||
1020 | g_pservices_path = get_persconffile_path(ENAME_SERVICES"services", true1); | |||
1021 | if (!parse_services_file(g_pservices_path)) { | |||
1022 | g_free(g_pservices_path); | |||
1023 | g_pservices_path = get_persconffile_path(ENAME_SERVICES"services", false0); | |||
1024 | parse_services_file(g_pservices_path); | |||
1025 | } | |||
1026 | } | |||
1027 | } | |||
1028 | ||||
1029 | static void | |||
1030 | service_name_lookup_cleanup(void) | |||
1031 | { | |||
1032 | serv_port_hashtable = NULL((void*)0); | |||
1033 | serv_port_custom_hashtable = NULL((void*)0); | |||
1034 | g_free(g_services_path); | |||
1035 | g_services_path = NULL((void*)0); | |||
1036 | g_free(g_pservices_path); | |||
1037 | g_pservices_path = NULL((void*)0); | |||
1038 | } | |||
1039 | ||||
1040 | static void | |||
1041 | parse_enterprises_line (char *line) | |||
1042 | { | |||
1043 | char *tok, *dec_str, *org_str; | |||
1044 | uint32_t dec; | |||
1045 | bool_Bool had_comment = false0; | |||
1046 | ||||
1047 | /* Stop the line at any comment found */ | |||
1048 | if ((tok = strchr(line, '#'))) { | |||
1049 | *tok = '\0'; | |||
1050 | had_comment = true1; | |||
1051 | } | |||
1052 | /* Get enterprise number */ | |||
1053 | dec_str = strtok(line, " \t"); | |||
1054 | if (!dec_str) | |||
1055 | return; | |||
1056 | /* Get enterprise name */ | |||
1057 | org_str = strtok(NULL((void*)0), ""); /* everything else */ | |||
1058 | if (org_str && had_comment) { | |||
1059 | /* Only need to strip after (between name and where comment was) */ | |||
1060 | org_str = g_strchomp(org_str); | |||
1061 | } | |||
1062 | if (!org_str) | |||
1063 | return; | |||
1064 | ||||
1065 | /* Add entry using number as key */ | |||
1066 | if (!ws_strtou32(dec_str, NULL((void*)0), &dec)) | |||
1067 | return; | |||
1068 | g_hash_table_insert(enterprises_hashtable, GUINT_TO_POINTER(dec)((gpointer) (gulong) (dec)), g_strdup(org_str)g_strdup_inline (org_str)); | |||
1069 | } | |||
1070 | ||||
1071 | ||||
1072 | static bool_Bool | |||
1073 | parse_enterprises_file(const char * path) | |||
1074 | { | |||
1075 | FILE *fp; | |||
1076 | char buf[MAX_LINELEN1024]; | |||
1077 | ||||
1078 | fp = ws_fopenfopen(path, "r"); | |||
1079 | if (fp == NULL((void*)0)) | |||
1080 | return false0; | |||
1081 | ||||
1082 | while (fgetline(buf, sizeof(buf), fp) >= 0) { | |||
1083 | parse_enterprises_line(buf); | |||
1084 | } | |||
1085 | ||||
1086 | fclose(fp); | |||
1087 | return true1; | |||
1088 | } | |||
1089 | ||||
1090 | static void | |||
1091 | initialize_enterprises(void) | |||
1092 | { | |||
1093 | ws_assert(enterprises_hashtable == NULL)do { if ((1) && !(enterprises_hashtable == ((void*)0) )) ws_log_fatal_full("", LOG_LEVEL_ERROR, "epan/addr_resolv.c" , 1093, __func__, "assertion failed: %s", "enterprises_hashtable == ((void*)0)" ); } while (0); | |||
1094 | enterprises_hashtable = g_hash_table_new_full(NULL((void*)0), NULL((void*)0), NULL((void*)0), g_free); | |||
1095 | ||||
1096 | if (g_enterprises_path == NULL((void*)0)) { | |||
1097 | g_enterprises_path = get_datafile_path(ENAME_ENTERPRISES"enterprises"); | |||
1098 | } | |||
1099 | parse_enterprises_file(g_enterprises_path); | |||
1100 | ||||
1101 | /* Populate entries from profile or personal */ | |||
1102 | if (g_penterprises_path == NULL((void*)0)) { | |||
1103 | /* Check profile directory before personal configuration */ | |||
1104 | g_penterprises_path = get_persconffile_path(ENAME_ENTERPRISES"enterprises", true1); | |||
1105 | if (!file_exists(g_penterprises_path)) { | |||
1106 | g_free(g_penterprises_path); | |||
1107 | g_penterprises_path = get_persconffile_path(ENAME_ENTERPRISES"enterprises", false0); | |||
1108 | } | |||
1109 | } | |||
1110 | /* Parse personal file (if present) */ | |||
1111 | parse_enterprises_file(g_penterprises_path); | |||
1112 | } | |||
1113 | ||||
1114 | const char * | |||
1115 | try_enterprises_lookup(uint32_t value) | |||
1116 | { | |||
1117 | /* Trying extra entries first. N.B. This does allow entries to be overwritten and found.. */ | |||
1118 | const char *name = (const char *)g_hash_table_lookup(enterprises_hashtable, GUINT_TO_POINTER(value)((gpointer) (gulong) (value))); | |||
1119 | if (name) { | |||
1120 | return name; | |||
1121 | } | |||
1122 | else { | |||
1123 | return global_enterprises_lookup(value); | |||
1124 | } | |||
1125 | } | |||
1126 | ||||
1127 | const char * | |||
1128 | enterprises_lookup(uint32_t value, const char *unknown_str) | |||
1129 | { | |||
1130 | const char *s; | |||
1131 | ||||
1132 | s = try_enterprises_lookup(value); | |||
1133 | if (s != NULL((void*)0)) | |||
1134 | return s; | |||
1135 | if (unknown_str != NULL((void*)0)) | |||
1136 | return unknown_str; | |||
1137 | return "<Unknown>"; | |||
1138 | } | |||
1139 | ||||
1140 | void | |||
1141 | enterprises_base_custom(char *buf, uint32_t value) | |||
1142 | { | |||
1143 | const char *s; | |||
1144 | ||||
1145 | if ((s = try_enterprises_lookup(value)) == NULL((void*)0)) | |||
1146 | s = ITEM_LABEL_UNKNOWN_STR"Unknown"; | |||
1147 | snprintf(buf, ITEM_LABEL_LENGTH240, "%s (%u)", s, value); | |||
1148 | } | |||
1149 | ||||
1150 | static void | |||
1151 | enterprises_cleanup(void) | |||
1152 | { | |||
1153 | ws_assert(enterprises_hashtable)do { if ((1) && !(enterprises_hashtable)) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1153, __func__, "assertion failed: %s" , "enterprises_hashtable"); } while (0); | |||
1154 | g_hash_table_destroy(enterprises_hashtable); | |||
1155 | enterprises_hashtable = NULL((void*)0); | |||
1156 | g_free(g_enterprises_path); | |||
1157 | g_enterprises_path = NULL((void*)0); | |||
1158 | g_free(g_penterprises_path); | |||
1159 | g_penterprises_path = NULL((void*)0); | |||
1160 | } | |||
1161 | ||||
1162 | /* Fill in an IP4 structure with info from subnets file or just with the | |||
1163 | * string form of the address. | |||
1164 | */ | |||
1165 | bool_Bool | |||
1166 | fill_dummy_ip4(const unsigned addr, hashipv4_t* volatile tp) | |||
1167 | { | |||
1168 | subnet_entry_t subnet_entry; | |||
1169 | ||||
1170 | /* return value : true if addr matches any subnet */ | |||
1171 | bool_Bool cidr_covered = false0; | |||
1172 | ||||
1173 | /* Overwrite if we get async DNS reply */ | |||
1174 | ||||
1175 | /* Do we have a subnet for this address? */ | |||
1176 | subnet_entry = subnet_lookup(addr); | |||
1177 | if (0 != subnet_entry.mask) { | |||
1178 | /* Print name, then '.' then IP address after subnet mask */ | |||
1179 | uint32_t host_addr; | |||
1180 | char buffer[WS_INET_ADDRSTRLEN16]; | |||
1181 | char* paddr; | |||
1182 | size_t i; | |||
1183 | ||||
1184 | host_addr = addr & (~subnet_entry.mask); | |||
1185 | ip_addr_to_str_buf(&host_addr, buffer, WS_INET_ADDRSTRLEN16); | |||
1186 | paddr = buffer; | |||
1187 | ||||
1188 | /* Skip to first octet that is not totally masked | |||
1189 | * If length of mask is 32, we chomp the whole address. | |||
1190 | * If the address string starts '.' (should not happen?), | |||
1191 | * we skip that '.'. | |||
1192 | */ | |||
1193 | i = subnet_entry.mask_length / 8; | |||
1194 | while(*(paddr) != '\0' && i > 0) { | |||
1195 | if (*(++paddr) == '.') { | |||
1196 | --i; | |||
1197 | } | |||
1198 | } | |||
1199 | ||||
1200 | /* There are more efficient ways to do this, but this is safe if we | |||
1201 | * trust snprintf and MAXDNSNAMELEN | |||
1202 | */ | |||
1203 | snprintf(tp->name, MAXDNSNAMELEN256, "%s%s", subnet_entry.name, paddr); | |||
1204 | ||||
1205 | /* Evaluate the subnet in CIDR notation | |||
1206 | * Reuse buffers built above | |||
1207 | */ | |||
1208 | uint32_t subnet_addr; | |||
1209 | subnet_addr = addr & subnet_entry.mask; | |||
1210 | ||||
1211 | char buffer_subnet[WS_INET_ADDRSTRLEN16]; | |||
1212 | ip_addr_to_str_buf(&subnet_addr, buffer_subnet, WS_INET_ADDRSTRLEN16); | |||
1213 | ||||
1214 | char buffer_cidr[WS_INET_CIDRADDRSTRLEN19]; | |||
1215 | snprintf(buffer_cidr, WS_INET_CIDRADDRSTRLEN19, "%s%s%u", buffer_subnet, "/", (unsigned)subnet_entry.mask_length); | |||
1216 | ||||
1217 | snprintf(tp->cidr_addr, WS_INET_CIDRADDRSTRLEN19, "%s%s%u", buffer_subnet, "/", (unsigned)subnet_entry.mask_length); | |||
1218 | cidr_covered = true1; | |||
1219 | } else { | |||
1220 | /* XXX: This means we end up printing "1.2.3.4 (1.2.3.4)" in many cases */ | |||
1221 | ip_addr_to_str_buf(&addr, tp->name, MAXDNSNAMELEN256); | |||
1222 | ||||
1223 | /* IP does not belong to any known subnet, just indicate this IP without "/.32" */ | |||
1224 | ip_addr_to_str_buf(&addr, tp->cidr_addr, MAXDNSNAMELEN256); | |||
1225 | } | |||
1226 | return cidr_covered; | |||
1227 | } | |||
1228 | ||||
1229 | ||||
1230 | /* Fill in an IP6 structure with the string form of the address. | |||
1231 | */ | |||
1232 | static void | |||
1233 | fill_dummy_ip6(hashipv6_t* volatile tp) | |||
1234 | { | |||
1235 | /* Overwrite if we get async DNS reply */ | |||
1236 | (void) g_strlcpy(tp->name, tp->ip6, MAXDNSNAMELEN256); | |||
1237 | } | |||
1238 | ||||
1239 | static void | |||
1240 | c_ares_ghba_cb(void *arg, int status, int timeouts _U___attribute__((unused)), struct hostent *he) { | |||
1241 | async_dns_queue_msg_t *caqm = (async_dns_queue_msg_t *)arg; | |||
1242 | char **p; | |||
1243 | ||||
1244 | if (!caqm) return; | |||
1245 | /* XXX, what to do if async_dns_in_flight == 0? */ | |||
1246 | async_dns_in_flight--; | |||
1247 | ||||
1248 | if (status == ARES_SUCCESS) { | |||
1249 | for (p = he->h_addr_list; *p != NULL((void*)0); p++) { | |||
1250 | switch(caqm->family) { | |||
1251 | case AF_INET2: | |||
1252 | add_ipv4_name(caqm->addr.ip4, he->h_name, false0); | |||
1253 | break; | |||
1254 | case AF_INET610: | |||
1255 | add_ipv6_name(&caqm->addr.ip6, he->h_name, false0); | |||
1256 | break; | |||
1257 | default: | |||
1258 | /* Throw an exception? */ | |||
1259 | break; | |||
1260 | } | |||
1261 | } | |||
1262 | } | |||
1263 | wmem_free(addr_resolv_scope, caqm); | |||
1264 | } | |||
1265 | ||||
1266 | /* --------------- */ | |||
1267 | hashipv4_t * | |||
1268 | new_ipv4(const unsigned addr) | |||
1269 | { | |||
1270 | hashipv4_t *tp = wmem_new(addr_resolv_scope, hashipv4_t)((hashipv4_t*)wmem_alloc((addr_resolv_scope), sizeof(hashipv4_t ))); | |||
1271 | tp->addr = addr; | |||
1272 | tp->flags = 0; | |||
1273 | tp->name[0] = '\0'; | |||
1274 | ip_addr_to_str_buf(&addr, tp->ip, sizeof(tp->ip)); | |||
1275 | return tp; | |||
1276 | } | |||
1277 | ||||
1278 | static hashipv4_t * | |||
1279 | host_lookup(const unsigned addr) | |||
1280 | { | |||
1281 | hashipv4_t * volatile tp; | |||
1282 | ||||
1283 | tp = (hashipv4_t *)wmem_map_lookup(ipv4_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr))); | |||
1284 | if (tp == NULL((void*)0)) { | |||
1285 | /* | |||
1286 | * We don't already have an entry for this host name; create one, | |||
1287 | * and then try to resolve it. | |||
1288 | */ | |||
1289 | tp = new_ipv4(addr); | |||
1290 | fill_dummy_ip4(addr, tp); | |||
1291 | wmem_map_insert(ipv4_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr)), tp); | |||
1292 | } else if (tp->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))) { | |||
1293 | return tp; | |||
1294 | } | |||
1295 | ||||
1296 | /* | |||
1297 | * This hasn't been resolved yet, and we haven't tried to | |||
1298 | * resolve it already. | |||
1299 | */ | |||
1300 | ||||
1301 | if (!gbl_resolv_flags.network_name) | |||
1302 | return tp; | |||
1303 | ||||
1304 | if (gbl_resolv_flags.use_external_net_name_resolver) { | |||
1305 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1306 | ||||
1307 | if (async_dns_initialized) { | |||
1308 | /* c-ares is initialized, so we can use it */ | |||
1309 | if (resolve_synchronously || name_resolve_concurrency == 0) { | |||
1310 | /* | |||
1311 | * Either all names are to be resolved synchronously or | |||
1312 | * the concurrencly level is 0; do the resolution | |||
1313 | * synchronously. | |||
1314 | */ | |||
1315 | sync_lookup_ip4(addr); | |||
1316 | } else { | |||
1317 | /* | |||
1318 | * Names are to be resolved asynchronously, and we | |||
1319 | * allow at least one asynchronous request in flight; | |||
1320 | * post an asynchronous request. | |||
1321 | */ | |||
1322 | async_dns_queue_msg_t *caqm; | |||
1323 | ||||
1324 | caqm = wmem_new(addr_resolv_scope, async_dns_queue_msg_t)((async_dns_queue_msg_t*)wmem_alloc((addr_resolv_scope), sizeof (async_dns_queue_msg_t))); | |||
1325 | caqm->family = AF_INET2; | |||
1326 | caqm->addr.ip4 = addr; | |||
1327 | wmem_list_append(async_dns_queue_head, (void *) caqm); | |||
1328 | } | |||
1329 | } | |||
1330 | } | |||
1331 | ||||
1332 | return tp; | |||
1333 | ||||
1334 | } /* host_lookup */ | |||
1335 | ||||
1336 | /* --------------- */ | |||
1337 | static hashipv6_t * | |||
1338 | new_ipv6(const ws_in6_addr *addr) | |||
1339 | { | |||
1340 | hashipv6_t *tp = wmem_new(addr_resolv_scope, hashipv6_t)((hashipv6_t*)wmem_alloc((addr_resolv_scope), sizeof(hashipv6_t ))); | |||
1341 | memcpy(tp->addr, addr->bytes, sizeof tp->addr); | |||
1342 | tp->flags = 0; | |||
1343 | tp->name[0] = '\0'; | |||
1344 | ip6_to_str_buf(addr, tp->ip6, sizeof(tp->ip6)); | |||
1345 | return tp; | |||
1346 | } | |||
1347 | ||||
1348 | /* ------------------------------------ */ | |||
1349 | static hashipv6_t * | |||
1350 | host_lookup6(const ws_in6_addr *addr) | |||
1351 | { | |||
1352 | hashipv6_t * volatile tp; | |||
1353 | ||||
1354 | tp = (hashipv6_t *)wmem_map_lookup(ipv6_hash_table, addr); | |||
1355 | if (tp == NULL((void*)0)) { | |||
1356 | /* | |||
1357 | * We don't already have an entry for this host name; create one, | |||
1358 | * and then try to resolve it. | |||
1359 | */ | |||
1360 | ws_in6_addr *addr_key; | |||
1361 | ||||
1362 | addr_key = wmem_new(addr_resolv_scope, ws_in6_addr)((ws_in6_addr*)wmem_alloc((addr_resolv_scope), sizeof(ws_in6_addr ))); | |||
1363 | tp = new_ipv6(addr); | |||
1364 | memcpy(addr_key, addr, 16); | |||
1365 | fill_dummy_ip6(tp); | |||
1366 | wmem_map_insert(ipv6_hash_table, addr_key, tp); | |||
1367 | } else if (tp->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))) { | |||
1368 | return tp; | |||
1369 | } | |||
1370 | ||||
1371 | /* | |||
1372 | * This hasn't been resolved yet, and we haven't tried to | |||
1373 | * resolve it already. | |||
1374 | */ | |||
1375 | ||||
1376 | if (!gbl_resolv_flags.network_name) | |||
1377 | return tp; | |||
1378 | ||||
1379 | if (gbl_resolv_flags.use_external_net_name_resolver) { | |||
1380 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1381 | ||||
1382 | if (async_dns_initialized) { | |||
1383 | /* c-ares is initialized, so we can use it */ | |||
1384 | if (resolve_synchronously || name_resolve_concurrency == 0) { | |||
1385 | /* | |||
1386 | * Either all names are to be resolved synchronously or | |||
1387 | * the concurrencly level is 0; do the resolution | |||
1388 | * synchronously. | |||
1389 | */ | |||
1390 | sync_lookup_ip6(addr); | |||
1391 | } else { | |||
1392 | /* | |||
1393 | * Names are to be resolved asynchronously, and we | |||
1394 | * allow at least one asynchronous request in flight; | |||
1395 | * post an asynchronous request. | |||
1396 | */ | |||
1397 | async_dns_queue_msg_t *caqm; | |||
1398 | ||||
1399 | caqm = wmem_new(addr_resolv_scope, async_dns_queue_msg_t)((async_dns_queue_msg_t*)wmem_alloc((addr_resolv_scope), sizeof (async_dns_queue_msg_t))); | |||
1400 | caqm->family = AF_INET610; | |||
1401 | memcpy(&caqm->addr.ip6, addr, sizeof(caqm->addr.ip6)); | |||
1402 | wmem_list_append(async_dns_queue_head, (void *) caqm); | |||
1403 | } | |||
1404 | } | |||
1405 | } | |||
1406 | ||||
1407 | return tp; | |||
1408 | ||||
1409 | } /* host_lookup6 */ | |||
1410 | ||||
1411 | /* | |||
1412 | * Ethernet / manufacturer resolution | |||
1413 | * | |||
1414 | * The following functions implement ethernet address resolution and | |||
1415 | * ethers files parsing (see ethers(4)). | |||
1416 | * | |||
1417 | * The manuf file has the same format as ethers(4) except that names are | |||
1418 | * truncated to MAXMANUFLEN-1 (8) characters and that an address contains | |||
1419 | * only 3 bytes (instead of 6). | |||
1420 | * | |||
1421 | * Notes: | |||
1422 | * | |||
1423 | * I decide to not use the existing functions (see ethers(3) on some | |||
1424 | * operating systems) for the following reasons: | |||
1425 | * - performance gains (use of hash tables and some other enhancements), | |||
1426 | * - use of two ethers files (system-wide and per user), | |||
1427 | * - avoid the use of NIS maps, | |||
1428 | * - lack of these functions on some systems. | |||
1429 | * | |||
1430 | * So the following functions do _not_ behave as the standard ones. | |||
1431 | * | |||
1432 | * -- Laurent. | |||
1433 | */ | |||
1434 | ||||
1435 | /* | |||
1436 | * Converts Ethernet addresses of the form aa:bb:cc or aa:bb:cc:dd:ee:ff/28. | |||
1437 | * '-' is also supported as a separator. The | |||
1438 | * octets must be exactly two hexadecimal characters and the mask must be either | |||
1439 | * 28 or 36. Pre-condition: cp MUST be at least 21 bytes. | |||
1440 | */ | |||
1441 | static bool_Bool | |||
1442 | parse_ether_address_fast(const unsigned char *cp, ether_t *eth, unsigned int *mask, | |||
1443 | const bool_Bool accept_mask) | |||
1444 | { | |||
1445 | /* XXX copied from strutil.c */ | |||
1446 | /* a map from ASCII hex chars to their value */ | |||
1447 | static const int8_t str_to_nibble[256] = { | |||
1448 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1449 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1450 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1451 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,-1,-1,-1,-1,-1,-1, | |||
1452 | -1,10,11,12,13,14,15,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1453 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1454 | -1,10,11,12,13,14,15,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1455 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1456 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1457 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1458 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1459 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1460 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1461 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1462 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, | |||
1463 | -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 | |||
1464 | }; | |||
1465 | const uint8_t *str_to_nibble_usg = (const uint8_t *)str_to_nibble; | |||
1466 | ||||
1467 | unsigned char sep = cp[2]; | |||
1468 | if ((sep != ':' && sep != '-') || cp[5] != sep) { | |||
1469 | /* Unexpected separators. */ | |||
1470 | return false0; | |||
1471 | } | |||
1472 | ||||
1473 | /* N.B. store octet values in an int to detect invalid (-1) entries */ | |||
1474 | int num0 = (str_to_nibble_usg[cp[0]] << 4) | (int8_t)str_to_nibble_usg[cp[1]]; | |||
1475 | int num1 = (str_to_nibble_usg[cp[3]] << 4) | (int8_t)str_to_nibble_usg[cp[4]]; | |||
1476 | int num2 = (str_to_nibble_usg[cp[6]] << 4) | (int8_t)str_to_nibble_usg[cp[7]]; | |||
1477 | ||||
1478 | if ((num0 | num1 | num2) & 0x100) { | |||
1479 | /* Not hexadecimal numbers. */ | |||
1480 | return false0; | |||
1481 | } | |||
1482 | ||||
1483 | eth->addr[0] = (uint8_t)num0; | |||
1484 | eth->addr[1] = (uint8_t)num1; | |||
1485 | eth->addr[2] = (uint8_t)num2; | |||
1486 | ||||
1487 | if (cp[8] == '\0' && accept_mask) { | |||
1488 | /* Indicate that this is a manufacturer ID (0 is not allowed as a mask). */ | |||
1489 | *mask = 0; | |||
1490 | return true1; | |||
1491 | } else if (cp[8] != sep || !accept_mask) { | |||
1492 | /* Format not handled by this fast path. */ | |||
1493 | return false0; | |||
1494 | } | |||
1495 | ||||
1496 | /* N.B. store octet values in an int to detect invalid (-1) entries */ | |||
1497 | int num3 = (str_to_nibble_usg[cp[9]] << 4) | (int8_t)str_to_nibble_usg[cp[10]]; | |||
1498 | int num4 = (str_to_nibble_usg[cp[12]] << 4) | (int8_t)str_to_nibble_usg[cp[13]]; | |||
1499 | int num5 = (str_to_nibble_usg[cp[15]] << 4) | (int8_t)str_to_nibble_usg[cp[16]]; | |||
1500 | ||||
1501 | if (((num3 | num4 | num5) & 0x100) || cp[11] != sep || cp[14] != sep) { | |||
1502 | /* Not hexadecimal numbers or invalid separators. */ | |||
1503 | return false0; | |||
1504 | } | |||
1505 | ||||
1506 | eth->addr[3] = (uint8_t)num3; | |||
1507 | eth->addr[4] = (uint8_t)num4; | |||
1508 | eth->addr[5] = (uint8_t)num5; | |||
1509 | if (cp[17] == '\0') { | |||
1510 | /* We got 6 bytes, so this is a MAC address (48 is not allowed as a mask). */ | |||
1511 | *mask = 48; | |||
1512 | return true1; | |||
1513 | } else if (cp[17] != '/' || cp[20] != '\0') { | |||
1514 | /* Format not handled by this fast path. */ | |||
1515 | return false0; | |||
1516 | } | |||
1517 | ||||
1518 | int m1 = cp[18]; | |||
1519 | int m2 = cp[19]; | |||
1520 | if (m1 == '3' && m2 == '6') { /* Mask /36 */ | |||
1521 | eth->addr[4] &= 0xf0; | |||
1522 | eth->addr[5] = 0; | |||
1523 | *mask = 36; | |||
1524 | return true1; | |||
1525 | } | |||
1526 | if (m1 == '2' && m2 == '8') { /* Mask /28 */ | |||
1527 | eth->addr[3] &= 0xf0; | |||
1528 | eth->addr[4] = 0; | |||
1529 | eth->addr[5] = 0; | |||
1530 | *mask = 28; | |||
1531 | return true1; | |||
1532 | } | |||
1533 | /* Unsupported mask */ | |||
1534 | return false0; | |||
1535 | } | |||
1536 | ||||
1537 | /* | |||
1538 | * If "accept_mask" is false, cp must point to an address that consists | |||
1539 | * of exactly 6 (EUI-48) or 8 (EUI-64) bytes. | |||
1540 | * If "accept_mask" is true, parse an up-to-6-byte sequence with an optional | |||
1541 | * mask. | |||
1542 | */ | |||
1543 | static bool_Bool | |||
1544 | parse_ether_address(const char *cp, ether_t *eth, unsigned int *mask, | |||
1545 | const bool_Bool accept_mask) | |||
1546 | { | |||
1547 | int i; | |||
1548 | unsigned long num; | |||
1549 | char *p; | |||
1550 | char sep = '\0'; | |||
1551 | ||||
1552 | for (i = 0; i < EUI64_ADDR_LEN8; i++) { | |||
1553 | /* Get a hex number, 1 or 2 digits, no sign characters allowed. */ | |||
1554 | if (!g_ascii_isxdigit(*cp)((g_ascii_table[(guchar) (*cp)] & G_ASCII_XDIGIT) != 0)) | |||
1555 | return false0; | |||
1556 | num = strtoul(cp, &p, 16); | |||
1557 | if (p == cp) | |||
1558 | return false0; /* failed */ | |||
1559 | if (num > 0xFF) | |||
1560 | return false0; /* not a valid octet */ | |||
1561 | eth->addr[i] = (uint8_t) num; | |||
1562 | cp = p; /* skip past the number */ | |||
1563 | ||||
1564 | /* OK, what character terminated the octet? */ | |||
1565 | if (*cp == '/') { | |||
1566 | /* "/" - this has a mask. */ | |||
1567 | if (!accept_mask) { | |||
1568 | /* Entries with masks are not allowed in this file. */ | |||
1569 | return false0; | |||
1570 | } | |||
1571 | cp++; /* skip past the '/' to get to the mask */ | |||
1572 | if (!g_ascii_isdigit(*cp)((g_ascii_table[(guchar) (*cp)] & G_ASCII_DIGIT) != 0)) | |||
1573 | return false0; /* no sign allowed */ | |||
1574 | num = strtoul(cp, &p, 10); | |||
1575 | if (p == cp) | |||
1576 | return false0; /* failed */ | |||
1577 | cp = p; /* skip past the number */ | |||
1578 | if (*cp != '\0' && !g_ascii_isspace(*cp)((g_ascii_table[(guchar) (*cp)] & G_ASCII_SPACE) != 0)) | |||
1579 | return false0; /* bogus terminator */ | |||
1580 | if (num == 0 || num >= 48) | |||
1581 | return false0; /* bogus mask */ | |||
1582 | /* Mask out the bits not covered by the mask */ | |||
1583 | *mask = (int)num; | |||
1584 | for (i = 0; num >= 8; i++, num -= 8) | |||
1585 | ; /* skip octets entirely covered by the mask */ | |||
1586 | /* Mask out the first masked octet */ | |||
1587 | eth->addr[i] &= (0xFF << (8 - num)); | |||
1588 | i++; | |||
1589 | /* Mask out completely-masked-out octets */ | |||
1590 | for (; i < 6; i++) | |||
1591 | eth->addr[i] = 0; | |||
1592 | return true1; | |||
1593 | } | |||
1594 | if (*cp == '\0') { | |||
1595 | /* We're at the end of the address, and there's no mask. */ | |||
1596 | if (i == 2) { | |||
1597 | /* We got 3 bytes, so this is a manufacturer ID. */ | |||
1598 | if (!accept_mask) { | |||
1599 | /* Manufacturer IDs are not allowed in this file */ | |||
1600 | return false0; | |||
1601 | } | |||
1602 | /* Indicate that this is a manufacturer ID (0 is not allowed | |||
1603 | as a mask). */ | |||
1604 | *mask = 0; | |||
1605 | return true1; | |||
1606 | } | |||
1607 | ||||
1608 | if (i == 5) { | |||
1609 | /* We got 6 bytes, so this is a MAC address (48 is not allowed as a mask). */ | |||
1610 | if (mask) { | |||
1611 | *mask = 48; | |||
1612 | } | |||
1613 | return true1; | |||
1614 | } | |||
1615 | ||||
1616 | if (i == 7) { | |||
1617 | /* We got 8 bytes, so this is a EUI-64 address (64 is not allowed as a mask). */ | |||
1618 | if (mask) { | |||
1619 | *mask = 64; | |||
1620 | } | |||
1621 | return true1; | |||
1622 | } | |||
1623 | ||||
1624 | /* We didn't get 3 or 6 or 8 bytes, and there's no mask; this is | |||
1625 | illegal. */ | |||
1626 | return false0; | |||
1627 | } else { | |||
1628 | if (sep == '\0') { | |||
1629 | /* We don't know the separator used in this number; it can either | |||
1630 | be ':', '-', or '.'. */ | |||
1631 | if (*cp != ':' && *cp != '-' && *cp != '.') | |||
1632 | return false0; | |||
1633 | sep = *cp; /* subsequent separators must be the same */ | |||
1634 | } else { | |||
1635 | /* It has to be the same as the first separator */ | |||
1636 | if (*cp != sep) | |||
1637 | return false0; | |||
1638 | } | |||
1639 | } | |||
1640 | cp++; | |||
1641 | } | |||
1642 | ||||
1643 | return true1; | |||
1644 | } | |||
1645 | ||||
1646 | static int | |||
1647 | parse_ether_line(char *line, ether_t *eth, unsigned int *mask, | |||
1648 | const bool_Bool accept_mask) | |||
1649 | { | |||
1650 | /* | |||
1651 | * See the ethers(4) or ethers(5) man page for ethers file format | |||
1652 | * (not available on all systems). | |||
1653 | * We allow both ethernet address separators (':' and '-'), | |||
1654 | * as well as Wireshark's '.' separator. | |||
1655 | */ | |||
1656 | ||||
1657 | char *cp; | |||
1658 | ||||
1659 | line = g_strstrip(line)g_strchomp (g_strchug (line)); | |||
1660 | if (line[0] == '\0' || line[0] == '#') | |||
1661 | return -1; | |||
1662 | ||||
1663 | if ((cp = strchr(line, '#'))) { | |||
1664 | *cp = '\0'; | |||
1665 | g_strchomp(line); | |||
1666 | } | |||
1667 | ||||
1668 | if ((cp = strtok(line, " \t")) == NULL((void*)0)) | |||
1669 | return -1; | |||
1670 | ||||
1671 | /* First try to match the common format for the large ethers file. */ | |||
1672 | if (!parse_ether_address_fast(cp, eth, mask, accept_mask)) { | |||
1673 | /* Fallback for the well-known addresses (wka) file. */ | |||
1674 | if (!parse_ether_address(cp, eth, mask, accept_mask)) | |||
1675 | return -1; | |||
1676 | } | |||
1677 | ||||
1678 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
1679 | return -1; | |||
1680 | ||||
1681 | (void) g_strlcpy(eth->name, cp, MAXNAMELEN64); | |||
1682 | ||||
1683 | if ((cp = strtok(NULL((void*)0), "\t")) != NULL((void*)0)) | |||
1684 | { | |||
1685 | (void) g_strlcpy(eth->longname, cp, MAXNAMELEN64); | |||
1686 | } else { | |||
1687 | /* Make the long name the short name */ | |||
1688 | (void) g_strlcpy(eth->longname, eth->name, MAXNAMELEN64); | |||
1689 | } | |||
1690 | ||||
1691 | return 0; | |||
1692 | ||||
1693 | } /* parse_ether_line */ | |||
1694 | ||||
1695 | static FILE *eth_p; | |||
1696 | ||||
1697 | static void | |||
1698 | set_ethent(char *path) | |||
1699 | { | |||
1700 | if (eth_p) | |||
1701 | rewind(eth_p); | |||
1702 | else | |||
1703 | eth_p = ws_fopenfopen(path, "r"); | |||
1704 | } | |||
1705 | ||||
1706 | static void | |||
1707 | end_ethent(void) | |||
1708 | { | |||
1709 | if (eth_p) { | |||
1710 | fclose(eth_p); | |||
1711 | eth_p = NULL((void*)0); | |||
1712 | } | |||
1713 | } | |||
1714 | ||||
1715 | static ether_t * | |||
1716 | get_ethent(unsigned int *mask, const bool_Bool accept_mask) | |||
1717 | { | |||
1718 | ||||
1719 | static ether_t eth; | |||
1720 | char buf[MAX_LINELEN1024]; | |||
1721 | ||||
1722 | if (eth_p == NULL((void*)0)) | |||
1723 | return NULL((void*)0); | |||
1724 | ||||
1725 | while (fgetline(buf, sizeof(buf), eth_p) >= 0) { | |||
1726 | if (parse_ether_line(buf, ð, mask, accept_mask) == 0) { | |||
1727 | return ð | |||
1728 | } | |||
1729 | } | |||
1730 | ||||
1731 | return NULL((void*)0); | |||
1732 | ||||
1733 | } /* get_ethent */ | |||
1734 | ||||
1735 | static hashmanuf_t * | |||
1736 | manuf_hash_new_entry(const uint8_t *addr, const char* name, const char* longname) | |||
1737 | { | |||
1738 | unsigned manuf_key; | |||
1739 | hashmanuf_t *manuf_value; | |||
1740 | char *endp; | |||
1741 | ||||
1742 | /* manuf needs only the 3 most significant octets of the ethernet address */ | |||
1743 | manuf_key = (addr[0] << 16) + (addr[1] << 8) + addr[2]; | |||
1744 | manuf_value = wmem_new(addr_resolv_scope, hashmanuf_t)((hashmanuf_t*)wmem_alloc((addr_resolv_scope), sizeof(hashmanuf_t ))); | |||
1745 | ||||
1746 | memcpy(manuf_value->addr, addr, 3); | |||
1747 | if (name != NULL((void*)0)) { | |||
1748 | (void) g_strlcpy(manuf_value->resolved_name, name, MAXNAMELEN64); | |||
1749 | manuf_value->flags = NAME_RESOLVED(1U<<1); | |||
1750 | if (longname != NULL((void*)0)) { | |||
1751 | (void) g_strlcpy(manuf_value->resolved_longname, longname, MAXNAMELEN64); | |||
1752 | } | |||
1753 | else { | |||
1754 | (void) g_strlcpy(manuf_value->resolved_longname, name, MAXNAMELEN64); | |||
1755 | } | |||
1756 | } | |||
1757 | else { | |||
1758 | manuf_value->flags = 0; | |||
1759 | manuf_value->resolved_name[0] = '\0'; | |||
1760 | manuf_value->resolved_longname[0] = '\0'; | |||
1761 | } | |||
1762 | /* Values returned by bytes_to_hexstr_punct() are *not* null-terminated */ | |||
1763 | endp = bytes_to_hexstr_punct(manuf_value->hexaddr, addr, sizeof(manuf_value->addr), ':'); | |||
1764 | *endp = '\0'; | |||
1765 | ||||
1766 | wmem_map_insert(manuf_hashtable, GUINT_TO_POINTER(manuf_key)((gpointer) (gulong) (manuf_key)), manuf_value); | |||
1767 | return manuf_value; | |||
1768 | } | |||
1769 | ||||
1770 | static hashwka_t* | |||
1771 | wka_hash_new_entry(const uint8_t *addr, char* name) | |||
1772 | { | |||
1773 | uint8_t *wka_key; | |||
1774 | hashwka_t *wka_value; | |||
1775 | ||||
1776 | wka_key = (uint8_t *)wmem_alloc(addr_resolv_scope, 6); | |||
1777 | memcpy(wka_key, addr, 6); | |||
1778 | ||||
1779 | wka_value = (hashwka_t*)wmem_new(addr_resolv_scope, hashwka_t)((hashwka_t*)wmem_alloc((addr_resolv_scope), sizeof(hashwka_t ))); | |||
1780 | wka_value->flags = NAME_RESOLVED(1U<<1); | |||
1781 | wka_value->name = wmem_strdup(addr_resolv_scope, name); | |||
1782 | ||||
1783 | wmem_map_insert(wka_hashtable, wka_key, wka_value); | |||
1784 | return wka_value; | |||
1785 | } | |||
1786 | ||||
1787 | static void | |||
1788 | add_manuf_name(const uint8_t *addr, unsigned int mask, char *name, char *longname) | |||
1789 | { | |||
1790 | switch (mask) | |||
1791 | { | |||
1792 | case 0: | |||
1793 | { | |||
1794 | /* This is a manufacturer ID; add it to the manufacturer ID hash table */ | |||
1795 | hashmanuf_t *entry = manuf_hash_new_entry(addr, name, longname); | |||
1796 | entry->flags |= STATIC_HOSTNAME(1U<<3); | |||
1797 | break; | |||
1798 | } | |||
1799 | case 48: | |||
1800 | { | |||
1801 | /* This is a well-known MAC address; add it to the Ethernet hash table */ | |||
1802 | add_eth_name(addr, name, true1); | |||
1803 | break; | |||
1804 | } | |||
1805 | default: | |||
1806 | { | |||
1807 | /* This is a range of well-known addresses; add it to the well-known-address table */ | |||
1808 | hashwka_t *entry = wka_hash_new_entry(addr, name); | |||
1809 | entry->flags |= STATIC_HOSTNAME(1U<<3); | |||
1810 | break; | |||
1811 | } | |||
1812 | } | |||
1813 | } /* add_manuf_name */ | |||
1814 | ||||
1815 | /* XXX: manuf_name_lookup returns a hashmanuf_t*, which cannot hold a 28 or | |||
1816 | * 36 bit MA-M or MA-S. So it returns those as unresolved. For EUI-48 and | |||
1817 | * EUI-64, MA-M and MA-S should be checked for separately in the global | |||
1818 | * tables. | |||
1819 | * | |||
1820 | * XXX - size_t is used only in a ws_return_val_if() that checks | |||
1821 | * whether the argument has at least 3 bytes; that's done only if | |||
1822 | * assertions are enabled, so it's used only if assertions are | |||
1823 | * enabled. This means that, if assertions aren't enabled, a | |||
1824 | * warning that the argument is unused will be issued by at least | |||
1825 | * some compilers, so we mark it as unused. Should we do that | |||
1826 | * check unconditionally, and just emit a warning if assertions | |||
1827 | * are enabled? | |||
1828 | */ | |||
1829 | static hashmanuf_t * | |||
1830 | manuf_name_lookup(const uint8_t *addr, size_t size _U___attribute__((unused))) | |||
1831 | { | |||
1832 | uint32_t manuf_key; | |||
1833 | uint8_t oct; | |||
1834 | hashmanuf_t *manuf_value; | |||
1835 | ||||
1836 | ws_return_val_if(size < 3, NULL)do { if (1 && (size < 3)) { ws_log_full("InvalidArg" , LOG_LEVEL_WARNING, "epan/addr_resolv.c", 1836, __func__, "invalid argument: %s" , "size < 3"); return (((void*)0)); } } while (0); | |||
1837 | ||||
1838 | /* manuf needs only the 3 most significant octets of the ethernet address */ | |||
1839 | manuf_key = addr[0]; | |||
1840 | manuf_key = manuf_key<<8; | |||
1841 | oct = addr[1]; | |||
1842 | manuf_key = manuf_key | oct; | |||
1843 | manuf_key = manuf_key<<8; | |||
1844 | oct = addr[2]; | |||
1845 | manuf_key = manuf_key | oct; | |||
1846 | ||||
1847 | ||||
1848 | /* first try to find a "perfect match" */ | |||
1849 | manuf_value = (hashmanuf_t*)wmem_map_lookup(manuf_hashtable, GUINT_TO_POINTER(manuf_key)((gpointer) (gulong) (manuf_key))); | |||
1850 | if (manuf_value != NULL((void*)0)) { | |||
1851 | manuf_value->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1852 | return manuf_value; | |||
1853 | } | |||
1854 | ||||
1855 | /* Mask out the broadcast/multicast flag but not the locally | |||
1856 | * administered flag as locally administered means: not assigned | |||
1857 | * by the IEEE but the local administrator instead. | |||
1858 | * 0x01 multicast / broadcast bit | |||
1859 | * 0x02 locally administered bit */ | |||
1860 | if ((manuf_key & 0x00010000) != 0) { | |||
1861 | manuf_key &= 0x00FEFFFF; | |||
1862 | manuf_value = (hashmanuf_t*)wmem_map_lookup(manuf_hashtable, GUINT_TO_POINTER(manuf_key)((gpointer) (gulong) (manuf_key))); | |||
1863 | if (manuf_value != NULL((void*)0)) { | |||
1864 | manuf_value->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1865 | return manuf_value; | |||
1866 | } | |||
1867 | } | |||
1868 | ||||
1869 | /* Try the global manuf tables. */ | |||
1870 | const char *short_name, *long_name; | |||
1871 | /* We can't insert a 28 or 36 bit entry into the used hash table. */ | |||
1872 | short_name = ws_manuf_lookup_oui24(addr, &long_name); | |||
1873 | if (short_name != NULL((void*)0)) { | |||
1874 | /* Found it */ | |||
1875 | manuf_value = manuf_hash_new_entry(addr, short_name, long_name); | |||
1876 | } else { | |||
1877 | /* Add the address as a hex string */ | |||
1878 | manuf_value = manuf_hash_new_entry(addr, NULL((void*)0), NULL((void*)0)); | |||
1879 | } | |||
1880 | ||||
1881 | manuf_value->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1882 | return manuf_value; | |||
1883 | ||||
1884 | } /* manuf_name_lookup */ | |||
1885 | ||||
1886 | static char * | |||
1887 | wka_name_lookup(const uint8_t *addr, const unsigned int mask) | |||
1888 | { | |||
1889 | uint8_t masked_addr[6]; | |||
1890 | unsigned num; | |||
1891 | int i; | |||
1892 | hashwka_t *value; | |||
1893 | ||||
1894 | if (wka_hashtable == NULL((void*)0)) { | |||
1895 | return NULL((void*)0); | |||
1896 | } | |||
1897 | /* Get the part of the address covered by the mask. */ | |||
1898 | for (i = 0, num = mask; num >= 8; i++, num -= 8) | |||
1899 | masked_addr[i] = addr[i]; /* copy octets entirely covered by the mask */ | |||
1900 | /* Mask out the first masked octet */ | |||
1901 | masked_addr[i] = addr[i] & (0xFF << (8 - num)); | |||
1902 | i++; | |||
1903 | /* Zero out completely-masked-out octets */ | |||
1904 | for (; i < 6; i++) | |||
1905 | masked_addr[i] = 0; | |||
1906 | ||||
1907 | value = (hashwka_t*)wmem_map_lookup(wka_hashtable, masked_addr); | |||
1908 | ||||
1909 | if (value) { | |||
1910 | value->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
1911 | return value->name; | |||
1912 | } | |||
1913 | ||||
1914 | return NULL((void*)0); | |||
1915 | ||||
1916 | } /* wka_name_lookup */ | |||
1917 | ||||
1918 | unsigned get_hash_ether_status(hashether_t* ether) | |||
1919 | { | |||
1920 | return ether->flags; | |||
1921 | } | |||
1922 | ||||
1923 | bool_Bool get_hash_ether_used(hashether_t* ether) | |||
1924 | { | |||
1925 | return ((ether->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))) == TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))); | |||
1926 | } | |||
1927 | ||||
1928 | char* get_hash_ether_hexaddr(hashether_t* ether) | |||
1929 | { | |||
1930 | return ether->hexaddr; | |||
1931 | } | |||
1932 | ||||
1933 | char* get_hash_ether_resolved_name(hashether_t* ether) | |||
1934 | { | |||
1935 | return ether->resolved_name; | |||
1936 | } | |||
1937 | ||||
1938 | bool_Bool get_hash_wka_used(hashwka_t* wka) | |||
1939 | { | |||
1940 | return ((wka->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))) == TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))); | |||
1941 | } | |||
1942 | ||||
1943 | char* get_hash_wka_resolved_name(hashwka_t* wka) | |||
1944 | { | |||
1945 | return wka->name; | |||
1946 | } | |||
1947 | ||||
1948 | static unsigned | |||
1949 | eth_addr_hash(const void *key) | |||
1950 | { | |||
1951 | return wmem_strong_hash((const uint8_t *)key, 6); | |||
1952 | } | |||
1953 | ||||
1954 | static gboolean | |||
1955 | eth_addr_cmp(const void *a, const void *b) | |||
1956 | { | |||
1957 | return (memcmp(a, b, 6) == 0); | |||
1958 | } | |||
1959 | ||||
1960 | static unsigned | |||
1961 | eui64_addr_hash(const void *key) | |||
1962 | { | |||
1963 | return wmem_strong_hash((const uint8_t *)key, EUI64_ADDR_LEN8); | |||
1964 | } | |||
1965 | ||||
1966 | static gboolean | |||
1967 | eui64_addr_cmp(const void *a, const void *b) | |||
1968 | { | |||
1969 | return (memcmp(a, b, EUI64_ADDR_LEN8) == 0); | |||
1970 | } | |||
1971 | ||||
1972 | static void | |||
1973 | initialize_ethers(void) | |||
1974 | { | |||
1975 | ether_t *eth; | |||
1976 | unsigned mask = 0; | |||
1977 | ||||
1978 | /* hash table initialization */ | |||
1979 | ws_assert(wka_hashtable == NULL)do { if ((1) && !(wka_hashtable == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1979, __func__, "assertion failed: %s" , "wka_hashtable == ((void*)0)"); } while (0); | |||
1980 | wka_hashtable = wmem_map_new(addr_resolv_scope, eth_addr_hash, eth_addr_cmp); | |||
1981 | ws_assert(manuf_hashtable == NULL)do { if ((1) && !(manuf_hashtable == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1981, __func__, "assertion failed: %s" , "manuf_hashtable == ((void*)0)"); } while (0); | |||
1982 | manuf_hashtable = wmem_map_new(addr_resolv_scope, g_direct_hash, g_direct_equal); | |||
1983 | ws_assert(eth_hashtable == NULL)do { if ((1) && !(eth_hashtable == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1983, __func__, "assertion failed: %s" , "eth_hashtable == ((void*)0)"); } while (0); | |||
1984 | eth_hashtable = wmem_map_new(addr_resolv_scope, eth_addr_hash, eth_addr_cmp); | |||
1985 | ws_assert(eui64_hashtable == NULL)do { if ((1) && !(eui64_hashtable == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 1985, __func__, "assertion failed: %s" , "eui64_hashtable == ((void*)0)"); } while (0); | |||
1986 | eui64_hashtable = wmem_map_new(addr_resolv_scope, eui64_addr_hash, eui64_addr_cmp); | |||
1987 | ||||
1988 | /* Compute the pathname of the ethers file. */ | |||
1989 | if (g_ethers_path == NULL((void*)0)) { | |||
1990 | g_ethers_path = g_build_filename(get_systemfile_dir(), ENAME_ETHERS"ethers", NULL((void*)0)); | |||
1991 | } | |||
1992 | ||||
1993 | /* Compute the pathname of the personal ethers file. */ | |||
1994 | if (g_pethers_path == NULL((void*)0)) { | |||
1995 | /* Check profile directory before personal configuration */ | |||
1996 | g_pethers_path = get_persconffile_path(ENAME_ETHERS"ethers", true1); | |||
1997 | if (!file_exists(g_pethers_path)) { | |||
1998 | g_free(g_pethers_path); | |||
1999 | g_pethers_path = get_persconffile_path(ENAME_ETHERS"ethers", false0); | |||
2000 | } | |||
2001 | } | |||
2002 | ||||
2003 | /* Compute the pathname of the global manuf file */ | |||
2004 | if (g_manuf_path == NULL((void*)0)) | |||
2005 | g_manuf_path = get_datafile_path(ENAME_MANUF"manuf"); | |||
2006 | /* Read it and initialize the hash table */ | |||
2007 | if (file_exists(g_manuf_path)) { | |||
2008 | set_ethent(g_manuf_path); | |||
2009 | while ((eth = get_ethent(&mask, true1))) { | |||
2010 | add_manuf_name(eth->addr, mask, eth->name, eth->longname); | |||
2011 | } | |||
2012 | end_ethent(); | |||
2013 | } | |||
2014 | ||||
2015 | /* Compute the pathname of the personal manuf file */ | |||
2016 | if (g_pmanuf_path == NULL((void*)0)) { | |||
2017 | /* Check profile directory before personal configuration */ | |||
2018 | g_pmanuf_path = get_persconffile_path(ENAME_MANUF"manuf", true1); | |||
2019 | if (!file_exists(g_pmanuf_path)) { | |||
2020 | g_free(g_pmanuf_path); | |||
2021 | g_pmanuf_path = get_persconffile_path(ENAME_MANUF"manuf", false0); | |||
2022 | } | |||
2023 | } | |||
2024 | /* Read it and initialize the hash table */ | |||
2025 | if (file_exists(g_pmanuf_path)) { | |||
2026 | set_ethent(g_pmanuf_path); | |||
2027 | while ((eth = get_ethent(&mask, true1))) { | |||
2028 | add_manuf_name(eth->addr, mask, eth->name, eth->longname); | |||
2029 | } | |||
2030 | end_ethent(); | |||
2031 | } | |||
2032 | ||||
2033 | /* Compute the pathname of the wka file */ | |||
2034 | if (g_wka_path == NULL((void*)0)) | |||
2035 | g_wka_path = get_datafile_path(ENAME_WKA"wka"); | |||
2036 | ||||
2037 | /* Read it and initialize the hash table */ | |||
2038 | set_ethent(g_wka_path); | |||
2039 | while ((eth = get_ethent(&mask, true1))) { | |||
2040 | add_manuf_name(eth->addr, mask, eth->name, eth->longname); | |||
2041 | } | |||
2042 | end_ethent(); | |||
2043 | ||||
2044 | /* Look at the ethers files last. These are set as static names, | |||
2045 | * so they override earlier entries, and the ones we read last | |||
2046 | * take precedence. Order of precedence is personal ethers file, | |||
2047 | * global ethers file, wka file, personal manuf file, global manuf | |||
2048 | * file, and then non-static sources like ARP Eth -> IP hostname | |||
2049 | * discovery (if enabled), NRB entries (if wiretap adds support for | |||
2050 | * EUI-48 in NRBs), etc. | |||
2051 | * XXX: What _is_ the proper order of precedence, and should it | |||
2052 | * be configurable? (cf. #18075) */ | |||
2053 | set_ethent(g_ethers_path); | |||
2054 | while ((eth = get_ethent(&mask, false0))) { | |||
2055 | if (mask == 48) { | |||
2056 | add_eth_name(eth->addr, eth->name, true1); | |||
2057 | } else if (mask == 64) { | |||
2058 | add_eui64_name(eth->addr, eth->name, true1); | |||
2059 | } | |||
2060 | } | |||
2061 | end_ethent(); | |||
2062 | ||||
2063 | if (file_exists(g_pethers_path)) { | |||
2064 | set_ethent(g_pethers_path); | |||
2065 | while ((eth = get_ethent(&mask, false0))) { | |||
2066 | if (mask == 48) { | |||
2067 | add_eth_name(eth->addr, eth->name, true1); | |||
2068 | } else if (mask == 64) { | |||
2069 | add_eui64_name(eth->addr, eth->name, true1); | |||
2070 | } | |||
2071 | } | |||
2072 | end_ethent(); | |||
2073 | } | |||
2074 | ||||
2075 | } /* initialize_ethers */ | |||
2076 | ||||
2077 | static void | |||
2078 | ethers_cleanup(void) | |||
2079 | { | |||
2080 | wka_hashtable = NULL((void*)0); | |||
2081 | manuf_hashtable = NULL((void*)0); | |||
2082 | eth_hashtable = NULL((void*)0); | |||
2083 | eui64_hashtable = NULL((void*)0); | |||
2084 | g_free(g_ethers_path); | |||
2085 | g_ethers_path = NULL((void*)0); | |||
2086 | g_free(g_pethers_path); | |||
2087 | g_pethers_path = NULL((void*)0); | |||
2088 | g_free(g_manuf_path); | |||
2089 | g_manuf_path = NULL((void*)0); | |||
2090 | g_free(g_pmanuf_path); | |||
2091 | g_pmanuf_path = NULL((void*)0); | |||
2092 | g_free(g_wka_path); | |||
2093 | g_wka_path = NULL((void*)0); | |||
2094 | } | |||
2095 | ||||
2096 | static void | |||
2097 | eth_resolved_name_fill(hashether_t *tp, const char *name, unsigned mask, const uint8_t *addr) | |||
2098 | { | |||
2099 | switch (mask) { | |||
2100 | case 24: | |||
2101 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x", | |||
2102 | name, addr[3], addr[4], addr[5]); | |||
2103 | break; | |||
2104 | case 28: | |||
2105 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%01x:%02x:%02x", | |||
2106 | name, addr[3] & 0x0F, addr[4], addr[5]); | |||
2107 | break; | |||
2108 | case 36: | |||
2109 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%01x:%02x", | |||
2110 | name, addr[4] & 0x0F, addr[5]); | |||
2111 | break; | |||
2112 | default: // Future-proof generic algorithm | |||
2113 | { | |||
2114 | unsigned bytes = mask / 8; | |||
2115 | unsigned bitmask = mask % 8; | |||
2116 | ||||
2117 | int pos = snprintf(tp->resolved_name, MAXNAMELEN64, "%s", name); | |||
2118 | if (pos >= MAXNAMELEN64) return; | |||
2119 | ||||
2120 | if (bytes < 6) { | |||
2121 | pos += snprintf(tp->resolved_name + pos, MAXNAMELEN64 - pos, | |||
2122 | bitmask >= 4 ? "_%01x" : "_%02x", | |||
2123 | addr[bytes] & (0xFF >> bitmask)); | |||
2124 | bytes++; | |||
2125 | } | |||
2126 | ||||
2127 | while (bytes < 6) { | |||
2128 | if (pos >= MAXNAMELEN64) return; | |||
2129 | pos += snprintf(tp->resolved_name + pos, MAXNAMELEN64 - pos, ":%02x", | |||
2130 | addr[bytes]); | |||
2131 | bytes++; | |||
2132 | } | |||
2133 | } | |||
2134 | } | |||
2135 | } | |||
2136 | ||||
2137 | /* Resolve ethernet address */ | |||
2138 | static hashether_t * | |||
2139 | eth_addr_resolve(hashether_t *tp) { | |||
2140 | hashmanuf_t *manuf_value; | |||
2141 | const uint8_t *addr = tp->addr; | |||
2142 | size_t addr_size = sizeof(tp->addr); | |||
2143 | ||||
2144 | if (!(tp->flags & NAME_RESOLVED(1U<<1))) { | |||
2145 | unsigned mask; | |||
2146 | char *name; | |||
2147 | address ether_addr; | |||
2148 | ||||
2149 | /* Unknown name. Try looking for it in the well-known-address | |||
2150 | tables for well-known address ranges smaller than 2^24. */ | |||
2151 | mask = 7; | |||
2152 | do { | |||
2153 | /* Only the topmost 5 bytes participate fully */ | |||
2154 | if ((name = wka_name_lookup(addr, mask+40)) != NULL((void*)0)) { | |||
2155 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x", | |||
2156 | name, addr[5] & (0xFF >> mask)); | |||
2157 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2158 | return tp; | |||
2159 | } | |||
2160 | } while (mask--); | |||
2161 | ||||
2162 | mask = 7; | |||
2163 | do { | |||
2164 | /* Only the topmost 4 bytes participate fully */ | |||
2165 | if ((name = wka_name_lookup(addr, mask+32)) != NULL((void*)0)) { | |||
2166 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x", | |||
2167 | name, addr[4] & (0xFF >> mask), addr[5]); | |||
2168 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2169 | return tp; | |||
2170 | } | |||
2171 | } while (mask--); | |||
2172 | ||||
2173 | mask = 7; | |||
2174 | do { | |||
2175 | /* Only the topmost 3 bytes participate fully */ | |||
2176 | if ((name = wka_name_lookup(addr, mask+24)) != NULL((void*)0)) { | |||
2177 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x", | |||
2178 | name, addr[3] & (0xFF >> mask), addr[4], addr[5]); | |||
2179 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2180 | return tp; | |||
2181 | } | |||
2182 | } while (mask--); | |||
2183 | ||||
2184 | /* Now try looking in the manufacturer table. */ | |||
2185 | manuf_value = manuf_name_lookup(addr, addr_size); | |||
2186 | if ((manuf_value != NULL((void*)0)) && ((manuf_value->flags & NAME_RESOLVED(1U<<1)) == NAME_RESOLVED(1U<<1))) { | |||
2187 | snprintf(tp->resolved_name, MAXNAMELEN64, "%.*s_%02x:%02x:%02x", | |||
2188 | MAXNAMELEN64 - 10, manuf_value->resolved_name, addr[3], addr[4], addr[5]); | |||
2189 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2190 | return tp; | |||
2191 | } | |||
2192 | ||||
2193 | /* Now try looking for it in the well-known-address | |||
2194 | tables for well-known address ranges larger than 2^24. */ | |||
2195 | mask = 7; | |||
2196 | do { | |||
2197 | /* Only the topmost 2 bytes participate fully */ | |||
2198 | if ((name = wka_name_lookup(addr, mask+16)) != NULL((void*)0)) { | |||
2199 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x:%02x", | |||
2200 | name, addr[2] & (0xFF >> mask), addr[3], addr[4], | |||
2201 | addr[5]); | |||
2202 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2203 | return tp; | |||
2204 | } | |||
2205 | } while (mask--); | |||
2206 | ||||
2207 | mask = 7; | |||
2208 | do { | |||
2209 | /* Only the topmost byte participates fully */ | |||
2210 | if ((name = wka_name_lookup(addr, mask+8)) != NULL((void*)0)) { | |||
2211 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x:%02x:%02x", | |||
2212 | name, addr[1] & (0xFF >> mask), addr[2], addr[3], | |||
2213 | addr[4], addr[5]); | |||
2214 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2215 | return tp; | |||
2216 | } | |||
2217 | } while (mask--); | |||
2218 | ||||
2219 | mask = 7; | |||
2220 | do { | |||
2221 | /* Not even the topmost byte participates fully */ | |||
2222 | if ((name = wka_name_lookup(addr, mask)) != NULL((void*)0)) { | |||
2223 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x:%02x:%02x:%02x", | |||
2224 | name, addr[0] & (0xFF >> mask), addr[1], addr[2], | |||
2225 | addr[3], addr[4], addr[5]); | |||
2226 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2227 | return tp; | |||
2228 | } | |||
2229 | } while (--mask); /* Work down to the last bit */ | |||
2230 | ||||
2231 | /* Now try looking in the global manuf data for a MA-M or MA-S | |||
2232 | * match. We do this last so that the other files override this | |||
2233 | * result. | |||
2234 | */ | |||
2235 | const char *short_name, *long_name; | |||
2236 | short_name = ws_manuf_lookup(addr, &long_name, &mask); | |||
2237 | if (short_name != NULL((void*)0)) { | |||
2238 | if (mask == 24) { | |||
2239 | /* This shouldn't happen as it should be handled above, | |||
2240 | * but it doesn't hurt. | |||
2241 | */ | |||
2242 | manuf_hash_new_entry(addr, short_name, long_name); | |||
2243 | } | |||
2244 | eth_resolved_name_fill(tp, short_name, mask, addr); | |||
2245 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2246 | return tp; | |||
2247 | } | |||
2248 | /* No match whatsoever. */ | |||
2249 | set_address(ðer_addr, AT_ETHER, 6, addr); | |||
2250 | address_to_str_buf(ðer_addr, tp->resolved_name, MAXNAMELEN64); | |||
2251 | return tp; | |||
2252 | } | |||
2253 | return tp; | |||
2254 | } /* eth_addr_resolve */ | |||
2255 | ||||
2256 | static hashether_t * | |||
2257 | eth_hash_new_entry(const uint8_t *addr, const bool_Bool resolve) | |||
2258 | { | |||
2259 | hashether_t *tp; | |||
2260 | char *endp; | |||
2261 | ||||
2262 | tp = wmem_new(addr_resolv_scope, hashether_t)((hashether_t*)wmem_alloc((addr_resolv_scope), sizeof(hashether_t ))); | |||
2263 | memcpy(tp->addr, addr, sizeof(tp->addr)); | |||
2264 | tp->flags = 0; | |||
2265 | /* Values returned by bytes_to_hexstr_punct() are *not* null-terminated */ | |||
2266 | endp = bytes_to_hexstr_punct(tp->hexaddr, addr, sizeof(tp->addr), ':'); | |||
2267 | *endp = '\0'; | |||
2268 | tp->resolved_name[0] = '\0'; | |||
2269 | ||||
2270 | if (resolve) | |||
2271 | eth_addr_resolve(tp); | |||
2272 | ||||
2273 | wmem_map_insert(eth_hashtable, tp->addr, tp); | |||
2274 | ||||
2275 | return tp; | |||
2276 | } /* eth_hash_new_entry */ | |||
2277 | ||||
2278 | static hashether_t * | |||
2279 | add_eth_name(const uint8_t *addr, const char *name, bool_Bool static_entry) | |||
2280 | { | |||
2281 | hashether_t *tp; | |||
2282 | ||||
2283 | tp = (hashether_t *)wmem_map_lookup(eth_hashtable, addr); | |||
2284 | ||||
2285 | if (tp == NULL((void*)0)) { | |||
2286 | tp = eth_hash_new_entry(addr, false0); | |||
2287 | } | |||
2288 | ||||
2289 | if (strcmp(tp->resolved_name, name) != 0 && (static_entry || !(tp->flags & STATIC_HOSTNAME(1U<<3)))) { | |||
2290 | (void) g_strlcpy(tp->resolved_name, name, MAXNAMELEN64); | |||
2291 | tp->flags |= NAME_RESOLVED(1U<<1); | |||
2292 | if (static_entry) { | |||
2293 | tp->flags |= STATIC_HOSTNAME(1U<<3); | |||
2294 | } | |||
2295 | new_resolved_objects = true1; | |||
2296 | } | |||
2297 | ||||
2298 | return tp; | |||
2299 | } /* add_eth_name */ | |||
2300 | ||||
2301 | static hashether_t * | |||
2302 | eth_name_lookup(const uint8_t *addr, const bool_Bool resolve) | |||
2303 | { | |||
2304 | hashether_t *tp; | |||
2305 | ||||
2306 | tp = (hashether_t *)wmem_map_lookup(eth_hashtable, addr); | |||
2307 | ||||
2308 | if (tp == NULL((void*)0)) { | |||
2309 | tp = eth_hash_new_entry(addr, resolve); | |||
2310 | } else { | |||
2311 | if (resolve && !(tp->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1)))) { | |||
2312 | eth_addr_resolve(tp); /* Found but needs to be resolved */ | |||
2313 | } | |||
2314 | } | |||
2315 | if (resolve) { | |||
2316 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
2317 | } | |||
2318 | ||||
2319 | return tp; | |||
2320 | ||||
2321 | } /* eth_name_lookup */ | |||
2322 | ||||
2323 | static void | |||
2324 | eui64_resolved_name_fill(hasheui64_t *tp, const char *name, unsigned mask, const uint8_t *addr) | |||
2325 | { | |||
2326 | switch (mask) { | |||
2327 | case 24: | |||
2328 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%02x:%02x:%02x:%02x:%02x", | |||
2329 | name, addr[3], addr[4], addr[5], addr[6], addr[7]); | |||
2330 | break; | |||
2331 | case 28: | |||
2332 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%01x:%02x:%02x:%02x:%02x", | |||
2333 | name, addr[3] & 0x0F, addr[4], addr[5], addr[6], addr[7]); | |||
2334 | break; | |||
2335 | case 36: | |||
2336 | snprintf(tp->resolved_name, MAXNAMELEN64, "%s_%01x:%02x:%02x:%02x", | |||
2337 | name, addr[4] & 0x0F, addr[5], addr[6], addr[7]); | |||
2338 | break; | |||
2339 | default: // Future-proof generic algorithm | |||
2340 | { | |||
2341 | unsigned bytes = mask / 8; | |||
2342 | unsigned bitmask = mask % 8; | |||
2343 | ||||
2344 | int pos = snprintf(tp->resolved_name, MAXNAMELEN64, "%s", name); | |||
2345 | if (pos >= MAXNAMELEN64) return; | |||
2346 | ||||
2347 | if (bytes < EUI64_ADDR_LEN8) { | |||
2348 | pos += snprintf(tp->resolved_name + pos, MAXNAMELEN64 - pos, | |||
2349 | bitmask >= 4 ? "_%01x" : "_%02x", | |||
2350 | addr[bytes] & (0xFF >> bitmask)); | |||
2351 | bytes++; | |||
2352 | } | |||
2353 | ||||
2354 | while (bytes < EUI64_ADDR_LEN8) { | |||
2355 | if (pos >= MAXNAMELEN64) return; | |||
2356 | pos += snprintf(tp->resolved_name + pos, MAXNAMELEN64 - pos, ":%02x", | |||
2357 | addr[bytes]); | |||
2358 | bytes++; | |||
2359 | } | |||
2360 | } | |||
2361 | } | |||
2362 | } | |||
2363 | ||||
2364 | /* Resolve EUI-64 address */ | |||
2365 | static hasheui64_t * | |||
2366 | eui64_addr_resolve(hasheui64_t *tp) | |||
2367 | { | |||
2368 | hashmanuf_t *manuf_value; | |||
2369 | const uint8_t *addr = tp->addr; | |||
2370 | size_t addr_size = sizeof(tp->addr); | |||
2371 | ||||
2372 | if (!(tp->flags & NAME_RESOLVED(1U<<1))) { | |||
2373 | unsigned mask; | |||
2374 | address eui64_addr; | |||
2375 | /* manuf_name_lookup returns a hashmanuf_t* that covers an entire /24, | |||
2376 | * so we can't properly use it for MA-M and MA-S. We do want to check | |||
2377 | * it first so it also covers the user-defined tables. | |||
2378 | */ | |||
2379 | manuf_value = manuf_name_lookup(addr, addr_size); | |||
2380 | if ((manuf_value != NULL((void*)0)) && ((manuf_value->flags & NAME_RESOLVED(1U<<1)) == NAME_RESOLVED(1U<<1))) { | |||
2381 | snprintf(tp->resolved_name, MAXNAMELEN64, "%.*s_%02x:%02x:%02x:%02x:%02x", | |||
2382 | MAXNAMELEN64 - 16, manuf_value->resolved_name, addr[3], addr[4], addr[5], addr[6], addr[7]); | |||
2383 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2384 | return tp; | |||
2385 | } | |||
2386 | ||||
2387 | /* Now try looking in the global manuf data for a MA-M or MA-S | |||
2388 | * match. We do this last so that the other files override this | |||
2389 | * result. | |||
2390 | */ | |||
2391 | const char *short_name, *long_name; | |||
2392 | short_name = ws_manuf_lookup(addr, &long_name, &mask); | |||
2393 | if (short_name != NULL((void*)0)) { | |||
2394 | if (mask == 24) { | |||
2395 | /* This shouldn't happen as it should be handled above, | |||
2396 | * but it doesn't hurt. | |||
2397 | */ | |||
2398 | manuf_hash_new_entry(addr, short_name, long_name); | |||
2399 | } | |||
2400 | eui64_resolved_name_fill(tp, short_name, mask, addr); | |||
2401 | tp->flags |= NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4); | |||
2402 | return tp; | |||
2403 | } | |||
2404 | /* No match whatsoever. */ | |||
2405 | set_address(&eui64_addr, AT_EUI64, 8, addr); | |||
2406 | address_to_str_buf(&eui64_addr, tp->resolved_name, MAXNAMELEN64); | |||
2407 | return tp; | |||
2408 | } | |||
2409 | ||||
2410 | return tp; | |||
2411 | } /* eui64_addr_resolve */ | |||
2412 | ||||
2413 | static hasheui64_t * | |||
2414 | eui64_hash_new_entry(const uint8_t *addr, const bool_Bool resolve) | |||
2415 | { | |||
2416 | hasheui64_t *tp; | |||
2417 | char *endp; | |||
2418 | ||||
2419 | tp = wmem_new(addr_resolv_scope, hasheui64_t)((hasheui64_t*)wmem_alloc((addr_resolv_scope), sizeof(hasheui64_t ))); | |||
2420 | memcpy(tp->addr, addr, sizeof(tp->addr)); | |||
2421 | tp->flags = 0; | |||
2422 | /* Values returned by bytes_to_hexstr_punct() are *not* null-terminated */ | |||
2423 | endp = bytes_to_hexstr_punct(tp->hexaddr, addr, sizeof(tp->addr), ':'); | |||
2424 | *endp = '\0'; | |||
2425 | tp->resolved_name[0] = '\0'; | |||
2426 | ||||
2427 | if (resolve) | |||
2428 | eui64_addr_resolve(tp); | |||
2429 | ||||
2430 | wmem_map_insert(eui64_hashtable, tp->addr, tp); | |||
2431 | ||||
2432 | return tp; | |||
2433 | } /* eui64_hash_new_entry */ | |||
2434 | ||||
2435 | static hasheui64_t * | |||
2436 | add_eui64_name(const uint8_t *addr, const char *name, bool_Bool static_entry) | |||
2437 | { | |||
2438 | hasheui64_t *tp; | |||
2439 | ||||
2440 | tp = (hasheui64_t *)wmem_map_lookup(eui64_hashtable, addr); | |||
2441 | ||||
2442 | if (tp == NULL((void*)0)) { | |||
2443 | tp = eui64_hash_new_entry(addr, false0); | |||
2444 | } | |||
2445 | ||||
2446 | if (strcmp(tp->resolved_name, name) != 0 && (static_entry || !(tp->flags & STATIC_HOSTNAME(1U<<3)))) { | |||
2447 | (void) g_strlcpy(tp->resolved_name, name, MAXNAMELEN64); | |||
2448 | tp->flags |= NAME_RESOLVED(1U<<1); | |||
2449 | if (static_entry) { | |||
2450 | tp->flags |= STATIC_HOSTNAME(1U<<3); | |||
2451 | } | |||
2452 | new_resolved_objects = true1; | |||
2453 | } | |||
2454 | ||||
2455 | return tp; | |||
2456 | } /* add_eui64_name */ | |||
2457 | ||||
2458 | static hasheui64_t * | |||
2459 | eui64_name_lookup(const uint8_t *addr, const bool_Bool resolve) | |||
2460 | { | |||
2461 | hasheui64_t *tp; | |||
2462 | ||||
2463 | tp = (hasheui64_t *)wmem_map_lookup(eui64_hashtable, addr); | |||
2464 | ||||
2465 | if (tp == NULL((void*)0)) { | |||
2466 | tp = eui64_hash_new_entry(addr, resolve); | |||
2467 | } else { | |||
2468 | if (resolve && !(tp->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1)))) { | |||
2469 | eui64_addr_resolve(tp); /* Found but needs to be resolved */ | |||
2470 | } | |||
2471 | } | |||
2472 | if (resolve) { | |||
2473 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0); | |||
2474 | } | |||
2475 | ||||
2476 | return tp; | |||
2477 | ||||
2478 | } /* eui64_name_lookup */ | |||
2479 | ||||
2480 | /* IPXNETS */ | |||
2481 | static int | |||
2482 | parse_ipxnets_line(char *line, ipxnet_t *ipxnet) | |||
2483 | { | |||
2484 | /* | |||
2485 | * We allow three address separators (':', '-', and '.'), | |||
2486 | * as well as no separators | |||
2487 | */ | |||
2488 | ||||
2489 | char *cp; | |||
2490 | uint32_t a, a0, a1, a2, a3; | |||
2491 | bool_Bool found_single_number = false0; | |||
2492 | ||||
2493 | if ((cp = strchr(line, '#'))) | |||
2494 | *cp = '\0'; | |||
2495 | ||||
2496 | if ((cp = strtok(line, " \t\n")) == NULL((void*)0)) | |||
2497 | return -1; | |||
2498 | ||||
2499 | /* Either fill a0,a1,a2,a3 and found_single_number is false, | |||
2500 | * fill a and found_single_number is true, | |||
2501 | * or return -1 | |||
2502 | */ | |||
2503 | if (sscanf(cp, "%x:%x:%x:%x", &a0, &a1, &a2, &a3) != 4) { | |||
2504 | if (sscanf(cp, "%x-%x-%x-%x", &a0, &a1, &a2, &a3) != 4) { | |||
2505 | if (sscanf(cp, "%x.%x.%x.%x", &a0, &a1, &a2, &a3) != 4) { | |||
2506 | if (sscanf(cp, "%x", &a) == 1) { | |||
2507 | found_single_number = true1; | |||
2508 | } | |||
2509 | else { | |||
2510 | return -1; | |||
2511 | } | |||
2512 | } | |||
2513 | } | |||
2514 | } | |||
2515 | ||||
2516 | if ((cp = strtok(NULL((void*)0), " \t\n")) == NULL((void*)0)) | |||
2517 | return -1; | |||
2518 | ||||
2519 | if (found_single_number) { | |||
2520 | ipxnet->addr = a; | |||
2521 | } | |||
2522 | else { | |||
2523 | ipxnet->addr = (a0 << 24) | (a1 << 16) | (a2 << 8) | a3; | |||
2524 | } | |||
2525 | ||||
2526 | (void) g_strlcpy(ipxnet->name, cp, MAXNAMELEN64); | |||
2527 | ||||
2528 | return 0; | |||
2529 | ||||
2530 | } /* parse_ipxnets_line */ | |||
2531 | ||||
2532 | static FILE *ipxnet_p; | |||
2533 | ||||
2534 | static void | |||
2535 | set_ipxnetent(char *path) | |||
2536 | { | |||
2537 | if (ipxnet_p) | |||
2538 | rewind(ipxnet_p); | |||
2539 | else | |||
2540 | ipxnet_p = ws_fopenfopen(path, "r"); | |||
2541 | } | |||
2542 | ||||
2543 | static void | |||
2544 | end_ipxnetent(void) | |||
2545 | { | |||
2546 | if (ipxnet_p) { | |||
2547 | fclose(ipxnet_p); | |||
2548 | ipxnet_p = NULL((void*)0); | |||
2549 | } | |||
2550 | } | |||
2551 | ||||
2552 | static ipxnet_t * | |||
2553 | get_ipxnetent(void) | |||
2554 | { | |||
2555 | ||||
2556 | static ipxnet_t ipxnet; | |||
2557 | char buf[MAX_LINELEN1024]; | |||
2558 | ||||
2559 | if (ipxnet_p
| |||
2560 | return NULL((void*)0); | |||
2561 | ||||
2562 | while (fgetline(buf, sizeof(buf), ipxnet_p) >= 0) { | |||
2563 | if (parse_ipxnets_line(buf, &ipxnet) == 0) { | |||
2564 | return &ipxnet; | |||
2565 | } | |||
2566 | } | |||
2567 | ||||
2568 | return NULL((void*)0); | |||
2569 | ||||
2570 | } /* get_ipxnetent */ | |||
2571 | ||||
2572 | static ipxnet_t * | |||
2573 | get_ipxnetbyaddr(uint32_t addr) | |||
2574 | { | |||
2575 | ipxnet_t *ipxnet; | |||
2576 | ||||
2577 | set_ipxnetent(g_ipxnets_path); | |||
2578 | ||||
2579 | while (((ipxnet = get_ipxnetent()) != NULL((void*)0)) && (addr != ipxnet->addr) ) ; | |||
2580 | ||||
2581 | if (ipxnet == NULL((void*)0)) { | |||
2582 | end_ipxnetent(); | |||
2583 | ||||
2584 | set_ipxnetent(g_pipxnets_path); | |||
2585 | ||||
2586 | while (((ipxnet = get_ipxnetent()) != NULL((void*)0)) && (addr != ipxnet->addr) ) | |||
2587 | ; | |||
2588 | ||||
2589 | end_ipxnetent(); | |||
2590 | } | |||
2591 | ||||
2592 | return ipxnet; | |||
2593 | ||||
2594 | } /* get_ipxnetbyaddr */ | |||
2595 | ||||
2596 | static void | |||
2597 | initialize_ipxnets(void) | |||
2598 | { | |||
2599 | /* Compute the pathname of the ipxnets file. | |||
2600 | * | |||
2601 | * XXX - is there a notion of an "ipxnets file" in any flavor of | |||
2602 | * UNIX, or with any add-on Netware package for UNIX? If not, | |||
2603 | * should the UNIX version of the ipxnets file be in the datafile | |||
2604 | * directory as well? | |||
2605 | */ | |||
2606 | if (g_ipxnets_path == NULL((void*)0)) { | |||
2607 | g_ipxnets_path = wmem_strdup_printf(addr_resolv_scope, "%s" G_DIR_SEPARATOR_S"/" "%s", | |||
2608 | get_systemfile_dir(), ENAME_IPXNETS"ipxnets"); | |||
2609 | } | |||
2610 | ||||
2611 | /* Set g_pipxnets_path here, but don't actually do anything | |||
2612 | * with it. It's used in get_ipxnetbyaddr(). | |||
2613 | */ | |||
2614 | if (g_pipxnets_path == NULL((void*)0)) { | |||
2615 | /* Check profile directory before personal configuration */ | |||
2616 | g_pipxnets_path = get_persconffile_path(ENAME_IPXNETS"ipxnets", true1); | |||
2617 | if (!file_exists(g_pipxnets_path)) { | |||
2618 | g_free(g_pipxnets_path); | |||
2619 | g_pipxnets_path = get_persconffile_path(ENAME_IPXNETS"ipxnets", false0); | |||
2620 | } | |||
2621 | } | |||
2622 | ||||
2623 | } /* initialize_ipxnets */ | |||
2624 | ||||
2625 | static void | |||
2626 | ipx_name_lookup_cleanup(void) | |||
2627 | { | |||
2628 | g_ipxnets_path = NULL((void*)0); | |||
2629 | g_free(g_pipxnets_path); | |||
2630 | g_pipxnets_path = NULL((void*)0); | |||
2631 | } | |||
2632 | ||||
2633 | static char * | |||
2634 | ipxnet_name_lookup(wmem_allocator_t *allocator, const unsigned addr) | |||
2635 | { | |||
2636 | hashipxnet_t *tp; | |||
2637 | ipxnet_t *ipxnet; | |||
2638 | ||||
2639 | tp = (hashipxnet_t *)wmem_map_lookup(ipxnet_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr))); | |||
2640 | if (tp == NULL((void*)0)) { | |||
2641 | tp = wmem_new(addr_resolv_scope, hashipxnet_t)((hashipxnet_t*)wmem_alloc((addr_resolv_scope), sizeof(hashipxnet_t ))); | |||
2642 | wmem_map_insert(ipxnet_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr)), tp); | |||
2643 | } else { | |||
2644 | return wmem_strdup(allocator, tp->name); | |||
2645 | } | |||
2646 | ||||
2647 | /* fill in a new entry */ | |||
2648 | ||||
2649 | tp->addr = addr; | |||
2650 | ||||
2651 | if ( (ipxnet = get_ipxnetbyaddr(addr)) == NULL((void*)0)) { | |||
2652 | /* unknown name */ | |||
2653 | snprintf(tp->name, MAXNAMELEN64, "%X", addr); | |||
2654 | ||||
2655 | } else { | |||
2656 | (void) g_strlcpy(tp->name, ipxnet->name, MAXNAMELEN64); | |||
2657 | } | |||
2658 | ||||
2659 | return wmem_strdup(allocator, tp->name); | |||
2660 | ||||
2661 | } /* ipxnet_name_lookup */ | |||
2662 | ||||
2663 | /* VLANS */ | |||
2664 | static int | |||
2665 | parse_vlan_line(char *line, vlan_t *vlan) | |||
2666 | { | |||
2667 | char *cp; | |||
2668 | uint16_t id; | |||
2669 | ||||
2670 | if ((cp = strchr(line, '#'))) | |||
2671 | *cp = '\0'; | |||
2672 | ||||
2673 | if ((cp = strtok(line, " \t\n")) == NULL((void*)0)) | |||
2674 | return -1; | |||
2675 | ||||
2676 | if (sscanf(cp, "%" SCNu16"hu", &id) == 1) { | |||
2677 | vlan->id = id; | |||
2678 | } | |||
2679 | else { | |||
2680 | return -1; | |||
2681 | } | |||
2682 | ||||
2683 | if ((cp = strtok(NULL((void*)0), "\t\n")) == NULL((void*)0)) | |||
2684 | return -1; | |||
2685 | ||||
2686 | (void) g_strlcpy(vlan->name, cp, MAXVLANNAMELEN128); | |||
2687 | ||||
2688 | return 0; | |||
2689 | ||||
2690 | } /* parse_vlan_line */ | |||
2691 | ||||
2692 | static FILE *vlan_p; | |||
2693 | ||||
2694 | static void | |||
2695 | set_vlanent(char *path) | |||
2696 | { | |||
2697 | if (vlan_p) | |||
2698 | rewind(vlan_p); | |||
2699 | else | |||
2700 | vlan_p = ws_fopenfopen(path, "r"); | |||
2701 | } | |||
2702 | ||||
2703 | static void | |||
2704 | end_vlanent(void) | |||
2705 | { | |||
2706 | if (vlan_p) { | |||
2707 | fclose(vlan_p); | |||
2708 | vlan_p = NULL((void*)0); | |||
2709 | } | |||
2710 | } | |||
2711 | ||||
2712 | static vlan_t * | |||
2713 | get_vlanent(void) | |||
2714 | { | |||
2715 | ||||
2716 | static vlan_t vlan; | |||
2717 | char buf[MAX_LINELEN1024]; | |||
2718 | ||||
2719 | if (vlan_p == NULL((void*)0)) | |||
2720 | return NULL((void*)0); | |||
2721 | ||||
2722 | while (fgetline(buf, sizeof(buf), vlan_p) >= 0) { | |||
2723 | if (parse_vlan_line(buf, &vlan) == 0) { | |||
2724 | return &vlan; | |||
2725 | } | |||
2726 | } | |||
2727 | ||||
2728 | return NULL((void*)0); | |||
2729 | ||||
2730 | } /* get_vlanent */ | |||
2731 | ||||
2732 | static vlan_t * | |||
2733 | get_vlannamebyid(uint16_t id) | |||
2734 | { | |||
2735 | vlan_t *vlan; | |||
2736 | ||||
2737 | set_vlanent(g_pvlan_path); | |||
2738 | ||||
2739 | while (((vlan = get_vlanent()) != NULL((void*)0)) && (id != vlan->id) ) ; | |||
2740 | ||||
2741 | if (vlan == NULL((void*)0)) { | |||
2742 | end_vlanent(); | |||
2743 | ||||
2744 | } | |||
2745 | ||||
2746 | return vlan; | |||
2747 | ||||
2748 | } /* get_vlannamebyid */ | |||
2749 | ||||
2750 | static void | |||
2751 | initialize_vlans(void) | |||
2752 | { | |||
2753 | ws_assert(vlan_hash_table == NULL)do { if ((1) && !(vlan_hash_table == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 2753, __func__, "assertion failed: %s" , "vlan_hash_table == ((void*)0)"); } while (0); | |||
2754 | vlan_hash_table = wmem_map_new(addr_resolv_scope, g_direct_hash, g_direct_equal); | |||
2755 | ||||
2756 | /* Set g_pvlan_path here, but don't actually do anything | |||
2757 | * with it. It's used in get_vlannamebyid() | |||
2758 | */ | |||
2759 | if (g_pvlan_path == NULL((void*)0)) { | |||
2760 | /* Check profile directory before personal configuration */ | |||
2761 | g_pvlan_path = get_persconffile_path(ENAME_VLANS"vlans", true1); | |||
2762 | if (!file_exists(g_pvlan_path)) { | |||
2763 | g_free(g_pvlan_path); | |||
2764 | g_pvlan_path = get_persconffile_path(ENAME_VLANS"vlans", false0); | |||
2765 | } | |||
2766 | } | |||
2767 | } /* initialize_vlans */ | |||
2768 | ||||
2769 | static void | |||
2770 | vlan_name_lookup_cleanup(void) | |||
2771 | { | |||
2772 | end_vlanent(); | |||
2773 | vlan_hash_table = NULL((void*)0); | |||
2774 | g_free(g_pvlan_path); | |||
2775 | g_pvlan_path = NULL((void*)0); | |||
2776 | } | |||
2777 | ||||
2778 | static const char * | |||
2779 | vlan_name_lookup(const unsigned id) | |||
2780 | { | |||
2781 | hashvlan_t *tp; | |||
2782 | vlan_t *vlan; | |||
2783 | ||||
2784 | tp = (hashvlan_t *)wmem_map_lookup(vlan_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id))); | |||
2785 | if (tp == NULL((void*)0)) { | |||
2786 | tp = wmem_new(addr_resolv_scope, hashvlan_t)((hashvlan_t*)wmem_alloc((addr_resolv_scope), sizeof(hashvlan_t ))); | |||
2787 | wmem_map_insert(vlan_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id)), tp); | |||
2788 | } else { | |||
2789 | return tp->name; | |||
2790 | } | |||
2791 | ||||
2792 | /* fill in a new entry */ | |||
2793 | ||||
2794 | tp->id = id; | |||
2795 | ||||
2796 | if ( (vlan = get_vlannamebyid(id)) == NULL((void*)0)) { | |||
2797 | /* unknown name */ | |||
2798 | snprintf(tp->name, MAXVLANNAMELEN128, "<%u>", id); | |||
2799 | ||||
2800 | } else { | |||
2801 | (void) g_strlcpy(tp->name, vlan->name, MAXVLANNAMELEN128); | |||
2802 | } | |||
2803 | ||||
2804 | return tp->name; | |||
2805 | ||||
2806 | } /* vlan_name_lookup */ | |||
2807 | /* VLAN END */ | |||
2808 | ||||
2809 | static bool_Bool | |||
2810 | read_hosts_file (const char *hostspath, bool_Bool store_entries) | |||
2811 | { | |||
2812 | FILE *hf; | |||
2813 | char line[MAX_LINELEN1024]; | |||
2814 | char *cp; | |||
2815 | union { | |||
2816 | uint32_t ip4_addr; | |||
2817 | ws_in6_addr ip6_addr; | |||
2818 | } host_addr; | |||
2819 | bool_Bool is_ipv6, entry_found = false0; | |||
2820 | ||||
2821 | /* | |||
2822 | * See the hosts(4) or hosts(5) man page for hosts file format | |||
2823 | * (not available on all systems). | |||
2824 | */ | |||
2825 | if ((hf = ws_fopenfopen(hostspath, "r")) == NULL((void*)0)) | |||
2826 | return false0; | |||
2827 | ||||
2828 | while (fgetline(line, sizeof(line), hf) >= 0) { | |||
2829 | if ((cp = strchr(line, '#'))) | |||
2830 | *cp = '\0'; | |||
2831 | ||||
2832 | if ((cp = strtok(line, " \t")) == NULL((void*)0)) | |||
2833 | continue; /* no tokens in the line */ | |||
2834 | ||||
2835 | if (ws_inet_pton6(cp, &host_addr.ip6_addr)) { | |||
2836 | /* Valid IPv6 */ | |||
2837 | is_ipv6 = true1; | |||
2838 | } else if (ws_inet_pton4(cp, &host_addr.ip4_addr)) { | |||
2839 | /* Valid IPv4 */ | |||
2840 | is_ipv6 = false0; | |||
2841 | } else { | |||
2842 | continue; | |||
2843 | } | |||
2844 | ||||
2845 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
2846 | continue; /* no host name */ | |||
2847 | ||||
2848 | entry_found = true1; | |||
2849 | if (store_entries) { | |||
2850 | if (is_ipv6) { | |||
2851 | add_ipv6_name(&host_addr.ip6_addr, cp, true1); | |||
2852 | } else { | |||
2853 | add_ipv4_name(host_addr.ip4_addr, cp, true1); | |||
2854 | } | |||
2855 | } | |||
2856 | } | |||
2857 | ||||
2858 | fclose(hf); | |||
2859 | return entry_found ? true1 : false0; | |||
2860 | } /* read_hosts_file */ | |||
2861 | ||||
2862 | bool_Bool | |||
2863 | add_hosts_file (const char *hosts_file) | |||
2864 | { | |||
2865 | bool_Bool found = false0; | |||
2866 | unsigned i; | |||
2867 | ||||
2868 | if (!hosts_file) | |||
2869 | return false0; | |||
2870 | ||||
2871 | if (!extra_hosts_files) | |||
2872 | extra_hosts_files = g_ptr_array_new(); | |||
2873 | ||||
2874 | for (i = 0; i < extra_hosts_files->len; i++) { | |||
2875 | if (strcmp(hosts_file, (const char *) g_ptr_array_index(extra_hosts_files, i)((extra_hosts_files)->pdata)[i]) == 0) | |||
2876 | found = true1; | |||
2877 | } | |||
2878 | ||||
2879 | if (!found) { | |||
2880 | g_ptr_array_add(extra_hosts_files, wmem_strdup(wmem_epan_scope(), hosts_file)); | |||
2881 | return read_hosts_file (hosts_file, false0); | |||
2882 | } | |||
2883 | return true1; | |||
2884 | } | |||
2885 | ||||
2886 | bool_Bool | |||
2887 | add_ip_name_from_string (const char *addr, const char *name) | |||
2888 | { | |||
2889 | union { | |||
2890 | uint32_t ip4_addr; | |||
2891 | ws_in6_addr ip6_addr; | |||
2892 | } host_addr; | |||
2893 | bool_Bool is_ipv6; | |||
2894 | resolved_name_t *resolved_entry; | |||
2895 | ||||
2896 | if (ws_inet_pton6(addr, &host_addr.ip6_addr)) { | |||
2897 | is_ipv6 = true1; | |||
2898 | } else if (ws_inet_pton4(addr, &host_addr.ip4_addr)) { | |||
2899 | is_ipv6 = false0; | |||
2900 | } else { | |||
2901 | return false0; | |||
2902 | } | |||
2903 | ||||
2904 | if (is_ipv6) { | |||
2905 | resolved_entry = (resolved_name_t*)wmem_map_lookup(manually_resolved_ipv6_list, &host_addr.ip6_addr); | |||
2906 | if (resolved_entry) | |||
2907 | { | |||
2908 | // If we found a previous matching key (IP address), then just update the value (custom hostname); | |||
2909 | (void) g_strlcpy(resolved_entry->name, name, MAXDNSNAMELEN256); | |||
2910 | } | |||
2911 | else | |||
2912 | { | |||
2913 | // Add a new mapping entry, if this IP address isn't already in the list. | |||
2914 | ws_in6_addr* addr_key = wmem_new(wmem_epan_scope(), ws_in6_addr)((ws_in6_addr*)wmem_alloc((wmem_epan_scope()), sizeof(ws_in6_addr ))); | |||
2915 | memcpy(addr_key, &host_addr.ip6_addr, sizeof(ws_in6_addr)); | |||
2916 | ||||
2917 | resolved_entry = wmem_new(wmem_epan_scope(), resolved_name_t)((resolved_name_t*)wmem_alloc((wmem_epan_scope()), sizeof(resolved_name_t ))); | |||
2918 | (void) g_strlcpy(resolved_entry->name, name, MAXDNSNAMELEN256); | |||
2919 | ||||
2920 | wmem_map_insert(manually_resolved_ipv6_list, addr_key, resolved_entry); | |||
2921 | } | |||
2922 | } else { | |||
2923 | resolved_entry = (resolved_name_t*)wmem_map_lookup(manually_resolved_ipv4_list, GUINT_TO_POINTER(host_addr.ip4_addr)((gpointer) (gulong) (host_addr.ip4_addr))); | |||
2924 | if (resolved_entry) | |||
2925 | { | |||
2926 | // If we found a previous matching key (IP address), then just update the value (custom hostname); | |||
2927 | (void) g_strlcpy(resolved_entry->name, name, MAXDNSNAMELEN256); | |||
2928 | } | |||
2929 | else | |||
2930 | { | |||
2931 | // Add a new mapping entry, if this IP address isn't already in the list. | |||
2932 | resolved_entry = wmem_new(wmem_epan_scope(), resolved_name_t)((resolved_name_t*)wmem_alloc((wmem_epan_scope()), sizeof(resolved_name_t ))); | |||
2933 | (void) g_strlcpy(resolved_entry->name, name, MAXDNSNAMELEN256); | |||
2934 | ||||
2935 | wmem_map_insert(manually_resolved_ipv4_list, GUINT_TO_POINTER(host_addr.ip4_addr)((gpointer) (gulong) (host_addr.ip4_addr)), resolved_entry); | |||
2936 | } | |||
2937 | } | |||
2938 | ||||
2939 | return true1; | |||
2940 | } /* add_ip_name_from_string */ | |||
2941 | ||||
2942 | extern resolved_name_t* get_edited_resolved_name(const char* addr) | |||
2943 | { | |||
2944 | uint32_t ip4_addr; | |||
2945 | ws_in6_addr ip6_addr; | |||
2946 | resolved_name_t* resolved_entry = NULL((void*)0); | |||
2947 | ||||
2948 | if (ws_inet_pton6(addr, &ip6_addr)) { | |||
2949 | resolved_entry = (resolved_name_t*)wmem_map_lookup(manually_resolved_ipv6_list, &ip6_addr); | |||
2950 | } | |||
2951 | else if (ws_inet_pton4(addr, &ip4_addr)) { | |||
2952 | resolved_entry = (resolved_name_t*)wmem_map_lookup(manually_resolved_ipv4_list, GUINT_TO_POINTER(ip4_addr)((gpointer) (gulong) (ip4_addr))); | |||
2953 | } | |||
2954 | ||||
2955 | return resolved_entry; | |||
2956 | } | |||
2957 | ||||
2958 | /* | |||
2959 | * Add the resolved addresses that are in use to the list used to create the pcapng NRB | |||
2960 | */ | |||
2961 | static void | |||
2962 | ipv4_hash_table_resolved_to_list(void *key _U___attribute__((unused)), void *value, void *user_data) | |||
2963 | { | |||
2964 | addrinfo_lists_t *lists = (addrinfo_lists_t *)user_data; | |||
2965 | hashipv4_t *ipv4_hash_table_entry = (hashipv4_t *)value; | |||
2966 | ||||
2967 | if ((ipv4_hash_table_entry->flags & USED_AND_RESOLVED_MASK((1U<<1) | (1U<<2))) == USED_AND_RESOLVED_MASK((1U<<1) | (1U<<2))) { | |||
2968 | lists->ipv4_addr_list = g_list_prepend(lists->ipv4_addr_list, ipv4_hash_table_entry); | |||
2969 | } | |||
2970 | } | |||
2971 | ||||
2972 | /* | |||
2973 | * Add the resolved addresses that are in use to the list used to create the pcapng NRB | |||
2974 | */ | |||
2975 | static void | |||
2976 | ipv6_hash_table_resolved_to_list(void *key _U___attribute__((unused)), void *value, void *user_data) | |||
2977 | { | |||
2978 | addrinfo_lists_t *lists = (addrinfo_lists_t *)user_data; | |||
2979 | hashipv6_t *ipv6_hash_table_entry = (hashipv6_t *)value; | |||
2980 | ||||
2981 | if ((ipv6_hash_table_entry->flags & USED_AND_RESOLVED_MASK((1U<<1) | (1U<<2))) == USED_AND_RESOLVED_MASK((1U<<1) | (1U<<2))) { | |||
2982 | lists->ipv6_addr_list = g_list_prepend(lists->ipv6_addr_list, ipv6_hash_table_entry); | |||
2983 | } | |||
2984 | } | |||
2985 | ||||
2986 | addrinfo_lists_t * | |||
2987 | get_addrinfo_list(void) | |||
2988 | { | |||
2989 | if (ipv4_hash_table) { | |||
2990 | wmem_map_foreach(ipv4_hash_table, ipv4_hash_table_resolved_to_list, &addrinfo_lists); | |||
2991 | } | |||
2992 | ||||
2993 | if (ipv6_hash_table) { | |||
2994 | wmem_map_foreach(ipv6_hash_table, ipv6_hash_table_resolved_to_list, &addrinfo_lists); | |||
2995 | } | |||
2996 | ||||
2997 | return &addrinfo_lists; | |||
2998 | } | |||
2999 | ||||
3000 | /* Read in a list of subnet definition - name pairs. | |||
3001 | * <line> = <comment> | <entry> | <whitespace> | |||
3002 | * <comment> = <whitespace>#<any> | |||
3003 | * <entry> = <subnet_definition> <whitespace> <subnet_name> [<comment>|<whitespace><any>] | |||
3004 | * <subnet_definition> = <ipv4_address> / <subnet_mask_length> | |||
3005 | * <ipv4_address> is a full address; it will be masked to get the subnet-ID. | |||
3006 | * <subnet_mask_length> is a decimal 1-31 | |||
3007 | * <subnet_name> is a string containing no whitespace. | |||
3008 | * <whitespace> = (space | tab)+ | |||
3009 | * Any malformed entries are ignored. | |||
3010 | * Any trailing data after the subnet_name is ignored. | |||
3011 | * | |||
3012 | * XXX Support IPv6 | |||
3013 | */ | |||
3014 | static bool_Bool | |||
3015 | read_subnets_file (const char *subnetspath) | |||
3016 | { | |||
3017 | FILE *hf; | |||
3018 | char line[MAX_LINELEN1024]; | |||
3019 | char *cp, *cp2; | |||
3020 | uint32_t host_addr; /* IPv4 ONLY */ | |||
3021 | uint8_t mask_length; | |||
3022 | ||||
3023 | if ((hf = ws_fopenfopen(subnetspath, "r")) == NULL((void*)0)) | |||
3024 | return false0; | |||
3025 | ||||
3026 | while (fgetline(line, sizeof(line), hf) >= 0) { | |||
3027 | if ((cp = strchr(line, '#'))) | |||
3028 | *cp = '\0'; | |||
3029 | ||||
3030 | if ((cp = strtok(line, " \t")) == NULL((void*)0)) | |||
3031 | continue; /* no tokens in the line */ | |||
3032 | ||||
3033 | ||||
3034 | /* Expected format is <IP4 address>/<subnet length> */ | |||
3035 | cp2 = strchr(cp, '/'); | |||
3036 | if (NULL((void*)0) == cp2) { | |||
3037 | /* No length */ | |||
3038 | continue; | |||
3039 | } | |||
3040 | *cp2 = '\0'; /* Cut token */ | |||
3041 | ++cp2 ; | |||
3042 | ||||
3043 | /* Check if this is a valid IPv4 address */ | |||
3044 | if (!str_to_ip(cp, &host_addr)) { | |||
3045 | continue; /* no */ | |||
3046 | } | |||
3047 | ||||
3048 | if (!ws_strtou8(cp2, NULL((void*)0), &mask_length) || mask_length == 0 || mask_length > 32) { | |||
3049 | continue; /* invalid mask length */ | |||
3050 | } | |||
3051 | ||||
3052 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
3053 | continue; /* no subnet name */ | |||
3054 | ||||
3055 | subnet_entry_set(host_addr, mask_length, cp); | |||
3056 | } | |||
3057 | ||||
3058 | fclose(hf); | |||
3059 | return true1; | |||
3060 | } /* read_subnets_file */ | |||
3061 | ||||
3062 | static subnet_entry_t | |||
3063 | subnet_lookup(const uint32_t addr) | |||
3064 | { | |||
3065 | subnet_entry_t subnet_entry; | |||
3066 | uint32_t i; | |||
3067 | ||||
3068 | /* Search mask lengths linearly, longest first */ | |||
3069 | ||||
3070 | i = SUBNETLENGTHSIZE32; | |||
3071 | while(have_subnet_entry && i > 0) { | |||
3072 | uint32_t masked_addr; | |||
3073 | subnet_length_entry_t* length_entry; | |||
3074 | ||||
3075 | /* Note that we run from 31 (length 32) to 0 (length 1) */ | |||
3076 | --i; | |||
3077 | ws_assert(i < SUBNETLENGTHSIZE)do { if ((1) && !(i < 32)) ws_log_fatal_full("", LOG_LEVEL_ERROR , "epan/addr_resolv.c", 3077, __func__, "assertion failed: %s" , "i < 32"); } while (0); | |||
3078 | ||||
3079 | ||||
3080 | length_entry = &subnet_length_entries[i]; | |||
3081 | ||||
3082 | if (NULL((void*)0) != length_entry->subnet_addresses) { | |||
3083 | sub_net_hashipv4_t * tp; | |||
3084 | uint32_t hash_idx; | |||
3085 | ||||
3086 | masked_addr = addr & length_entry->mask; | |||
3087 | hash_idx = HASH_IPV4_ADDRESS(masked_addr)((((((guint32) ( (((guint32) (masked_addr) & (guint32) 0x000000ffU ) << 24) | (((guint32) (masked_addr) & (guint32) 0x0000ff00U ) << 8) | (((guint32) (masked_addr) & (guint32) 0x00ff0000U ) >> 8) | (((guint32) (masked_addr) & (guint32) 0xff000000U ) >> 24)))))) & (2048 - 1)); | |||
3088 | ||||
3089 | tp = length_entry->subnet_addresses[hash_idx]; | |||
3090 | while(tp != NULL((void*)0) && tp->addr != masked_addr) { | |||
3091 | tp = tp->next; | |||
3092 | } | |||
3093 | ||||
3094 | if (NULL((void*)0) != tp) { | |||
3095 | subnet_entry.mask = length_entry->mask; | |||
3096 | subnet_entry.mask_length = i + 1; /* Length is offset + 1 */ | |||
3097 | subnet_entry.name = tp->name; | |||
3098 | return subnet_entry; | |||
3099 | } | |||
3100 | } | |||
3101 | } | |||
3102 | ||||
3103 | subnet_entry.mask = 0; | |||
3104 | subnet_entry.mask_length = 0; | |||
3105 | subnet_entry.name = NULL((void*)0); | |||
3106 | ||||
3107 | return subnet_entry; | |||
3108 | } | |||
3109 | ||||
3110 | /* Add a subnet-definition - name pair to the set. | |||
3111 | * The definition is taken by masking the address passed in with the mask of the | |||
3112 | * given length. | |||
3113 | */ | |||
3114 | static void | |||
3115 | subnet_entry_set(uint32_t subnet_addr, const uint8_t mask_length, const char* name) | |||
3116 | { | |||
3117 | subnet_length_entry_t* entry; | |||
3118 | sub_net_hashipv4_t * tp; | |||
3119 | size_t hash_idx; | |||
3120 | ||||
3121 | ws_assert(mask_length > 0 && mask_length <= 32)do { if ((1) && !(mask_length > 0 && mask_length <= 32)) ws_log_fatal_full("", LOG_LEVEL_ERROR, "epan/addr_resolv.c" , 3121, __func__, "assertion failed: %s", "mask_length > 0 && mask_length <= 32" ); } while (0); | |||
3122 | ||||
3123 | entry = &subnet_length_entries[mask_length - 1]; | |||
3124 | ||||
3125 | subnet_addr &= entry->mask; | |||
3126 | ||||
3127 | hash_idx = HASH_IPV4_ADDRESS(subnet_addr)((((((guint32) ( (((guint32) (subnet_addr) & (guint32) 0x000000ffU ) << 24) | (((guint32) (subnet_addr) & (guint32) 0x0000ff00U ) << 8) | (((guint32) (subnet_addr) & (guint32) 0x00ff0000U ) >> 8) | (((guint32) (subnet_addr) & (guint32) 0xff000000U ) >> 24)))))) & (2048 - 1)); | |||
3128 | ||||
3129 | if (NULL((void*)0) == entry->subnet_addresses) { | |||
3130 | entry->subnet_addresses = (sub_net_hashipv4_t**)wmem_alloc0(addr_resolv_scope, sizeof(sub_net_hashipv4_t*) * HASHHOSTSIZE2048); | |||
3131 | } | |||
3132 | ||||
3133 | if (NULL((void*)0) != (tp = entry->subnet_addresses[hash_idx])) { | |||
3134 | sub_net_hashipv4_t * new_tp; | |||
3135 | ||||
3136 | while (tp->next) { | |||
3137 | if (tp->addr == subnet_addr) { | |||
3138 | return; /* XXX provide warning that an address was repeated? */ | |||
3139 | } else { | |||
3140 | tp = tp->next; | |||
3141 | } | |||
3142 | } | |||
3143 | ||||
3144 | new_tp = wmem_new(addr_resolv_scope, sub_net_hashipv4_t)((sub_net_hashipv4_t*)wmem_alloc((addr_resolv_scope), sizeof( sub_net_hashipv4_t))); | |||
3145 | tp->next = new_tp; | |||
3146 | tp = new_tp; | |||
3147 | } else { | |||
3148 | tp = entry->subnet_addresses[hash_idx] = wmem_new(addr_resolv_scope, sub_net_hashipv4_t)((sub_net_hashipv4_t*)wmem_alloc((addr_resolv_scope), sizeof( sub_net_hashipv4_t))); | |||
3149 | } | |||
3150 | ||||
3151 | tp->next = NULL((void*)0); | |||
3152 | tp->addr = subnet_addr; | |||
3153 | (void) g_strlcpy(tp->name, name, MAXNAMELEN64); /* This is longer than subnet names can actually be */ | |||
3154 | have_subnet_entry = true1; | |||
3155 | } | |||
3156 | ||||
3157 | static void | |||
3158 | subnet_name_lookup_init(void) | |||
3159 | { | |||
3160 | char* subnetspath; | |||
3161 | uint32_t i; | |||
3162 | ||||
3163 | for(i = 0; i < SUBNETLENGTHSIZE32; ++i) { | |||
3164 | uint32_t length = i + 1; | |||
3165 | ||||
3166 | subnet_length_entries[i].subnet_addresses = NULL((void*)0); | |||
3167 | subnet_length_entries[i].mask_length = length; | |||
3168 | subnet_length_entries[i].mask = g_htonl(ws_ipv4_get_subnet_mask(length))(((((guint32) ( (((guint32) (ws_ipv4_get_subnet_mask(length)) & (guint32) 0x000000ffU) << 24) | (((guint32) (ws_ipv4_get_subnet_mask (length)) & (guint32) 0x0000ff00U) << 8) | (((guint32 ) (ws_ipv4_get_subnet_mask(length)) & (guint32) 0x00ff0000U ) >> 8) | (((guint32) (ws_ipv4_get_subnet_mask(length)) & (guint32) 0xff000000U) >> 24)))))); | |||
3169 | } | |||
3170 | ||||
3171 | /* Check profile directory before personal configuration */ | |||
3172 | subnetspath = get_persconffile_path(ENAME_SUBNETS"subnets", true1); | |||
3173 | if (!read_subnets_file(subnetspath)) { | |||
3174 | if (errno(*__errno_location ()) != ENOENT2) { | |||
3175 | report_open_failure(subnetspath, errno(*__errno_location ()), false0); | |||
3176 | } | |||
3177 | ||||
3178 | g_free(subnetspath); | |||
3179 | subnetspath = get_persconffile_path(ENAME_SUBNETS"subnets", false0); | |||
3180 | if (!read_subnets_file(subnetspath) && errno(*__errno_location ()) != ENOENT2) { | |||
3181 | report_open_failure(subnetspath, errno(*__errno_location ()), false0); | |||
3182 | } | |||
3183 | } | |||
3184 | g_free(subnetspath); | |||
3185 | ||||
3186 | /* | |||
3187 | * Load the global subnets file, if we have one. | |||
3188 | */ | |||
3189 | subnetspath = get_datafile_path(ENAME_SUBNETS"subnets"); | |||
3190 | if (!read_subnets_file(subnetspath) && errno(*__errno_location ()) != ENOENT2) { | |||
3191 | report_open_failure(subnetspath, errno(*__errno_location ()), false0); | |||
3192 | } | |||
3193 | g_free(subnetspath); | |||
3194 | } | |||
3195 | ||||
3196 | /* SS7 PC Name Resolution Portion */ | |||
3197 | static hashss7pc_t * | |||
3198 | new_ss7pc(const uint8_t ni, const uint32_t pc) | |||
3199 | { | |||
3200 | hashss7pc_t *tp = wmem_new(addr_resolv_scope, hashss7pc_t)((hashss7pc_t*)wmem_alloc((addr_resolv_scope), sizeof(hashss7pc_t ))); | |||
3201 | tp->id = (ni<<24) + (pc&0xffffff); | |||
3202 | tp->pc_addr[0] = '\0'; | |||
3203 | tp->name[0] = '\0'; | |||
3204 | ||||
3205 | return tp; | |||
3206 | } | |||
3207 | ||||
3208 | static hashss7pc_t * | |||
3209 | host_lookup_ss7pc(const uint8_t ni, const uint32_t pc) | |||
3210 | { | |||
3211 | hashss7pc_t * volatile tp; | |||
3212 | uint32_t id; | |||
3213 | ||||
3214 | id = (ni<<24) + (pc&0xffffff); | |||
3215 | ||||
3216 | tp = (hashss7pc_t *)wmem_map_lookup(ss7pc_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id))); | |||
3217 | if (tp == NULL((void*)0)) { | |||
3218 | tp = new_ss7pc(ni, pc); | |||
3219 | wmem_map_insert(ss7pc_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id)), tp); | |||
3220 | } | |||
3221 | ||||
3222 | return tp; | |||
3223 | } | |||
3224 | ||||
3225 | void fill_unresolved_ss7pc(const char * pc_addr, const uint8_t ni, const uint32_t pc) | |||
3226 | { | |||
3227 | hashss7pc_t *tp = host_lookup_ss7pc(ni, pc); | |||
3228 | ||||
3229 | (void) g_strlcpy(tp->pc_addr, pc_addr, MAXNAMELEN64); | |||
3230 | } | |||
3231 | ||||
3232 | const char * | |||
3233 | get_hostname_ss7pc(const uint8_t ni, const uint32_t pc) | |||
3234 | { | |||
3235 | hashss7pc_t *tp = host_lookup_ss7pc(ni, pc); | |||
3236 | ||||
3237 | /* never resolved yet*/ | |||
3238 | if (tp->pc_addr[0] == '\0') | |||
3239 | return tp->pc_addr; | |||
3240 | ||||
3241 | /* Don't have name in file */ | |||
3242 | if (tp->name[0] == '\0') | |||
3243 | return tp->pc_addr; | |||
3244 | ||||
3245 | if (!gbl_resolv_flags.ss7pc_name) | |||
3246 | return tp->pc_addr; | |||
3247 | ||||
3248 | return tp->name; | |||
3249 | } | |||
3250 | ||||
3251 | static void | |||
3252 | add_ss7pc_name(const uint8_t ni, uint32_t pc, const char *name) | |||
3253 | { | |||
3254 | hashss7pc_t *tp; | |||
3255 | uint32_t id; | |||
3256 | ||||
3257 | if (!name || name[0] == '\0') | |||
3258 | return; | |||
3259 | ||||
3260 | id = (ni<<24) + (pc&0xffffff); | |||
3261 | tp = (hashss7pc_t *)wmem_map_lookup(ss7pc_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id))); | |||
3262 | if (!tp) { | |||
3263 | tp = new_ss7pc(ni, pc); | |||
3264 | wmem_map_insert(ss7pc_hash_table, GUINT_TO_POINTER(id)((gpointer) (gulong) (id)), tp); | |||
3265 | } | |||
3266 | ||||
3267 | if (g_ascii_strcasecmp(tp->name, name)) { | |||
3268 | (void) g_strlcpy(tp->name, name, MAXNAMELEN64); | |||
3269 | } | |||
3270 | } | |||
3271 | ||||
3272 | static bool_Bool | |||
3273 | read_ss7pcs_file(const char *ss7pcspath) | |||
3274 | { | |||
3275 | FILE *hf; | |||
3276 | char line[MAX_LINELEN1024]; | |||
3277 | char *cp; | |||
3278 | uint8_t ni; | |||
3279 | uint32_t pc; | |||
3280 | bool_Bool entry_found = false0; | |||
3281 | ||||
3282 | /* | |||
3283 | * File format is Network Indicator (decimal)<dash>Point Code (Decimal)<tab/space>Hostname | |||
3284 | */ | |||
3285 | if ((hf = ws_fopenfopen(ss7pcspath, "r")) == NULL((void*)0)) | |||
3286 | return false0; | |||
3287 | ||||
3288 | while (fgetline(line, sizeof(line), hf) >= 0) { | |||
3289 | if ((cp = strchr(line, '#'))) | |||
3290 | *cp = '\0'; | |||
3291 | ||||
3292 | if ((cp = strtok(line, "-")) == NULL((void*)0)) | |||
3293 | continue; /*no ni-pc separator*/ | |||
3294 | if (!ws_strtou8(cp, NULL((void*)0), &ni)) | |||
3295 | continue; | |||
3296 | if (ni > 3) | |||
3297 | continue; | |||
3298 | ||||
3299 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
3300 | continue; /* no tokens for pc and name */ | |||
3301 | if (!ws_strtou32(cp, NULL((void*)0), &pc)) | |||
3302 | continue; | |||
3303 | if (pc >> 24 > 0) | |||
3304 | continue; | |||
3305 | ||||
3306 | if ((cp = strtok(NULL((void*)0), " \t")) == NULL((void*)0)) | |||
3307 | continue; /* no host name */ | |||
3308 | ||||
3309 | entry_found = true1; | |||
3310 | add_ss7pc_name(ni, pc, cp); | |||
3311 | } | |||
3312 | ||||
3313 | fclose(hf); | |||
3314 | return entry_found ? true1 : false0; | |||
3315 | } | |||
3316 | ||||
3317 | static void | |||
3318 | ss7pc_name_lookup_init(void) | |||
3319 | { | |||
3320 | char *ss7pcspath; | |||
3321 | ||||
3322 | ws_assert(ss7pc_hash_table == NULL)do { if ((1) && !(ss7pc_hash_table == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 3322, __func__, "assertion failed: %s" , "ss7pc_hash_table == ((void*)0)"); } while (0); | |||
3323 | ||||
3324 | ss7pc_hash_table = wmem_map_new(addr_resolv_scope, g_direct_hash, g_direct_equal); | |||
3325 | ||||
3326 | /* | |||
3327 | * Load the user's ss7pcs file | |||
3328 | */ | |||
3329 | ss7pcspath = get_persconffile_path(ENAME_SS7PCS"ss7pcs", true1); | |||
3330 | if (!read_ss7pcs_file(ss7pcspath) && errno(*__errno_location ()) != ENOENT2) { | |||
3331 | report_open_failure(ss7pcspath, errno(*__errno_location ()), false0); | |||
3332 | } | |||
3333 | g_free(ss7pcspath); | |||
3334 | } | |||
3335 | ||||
3336 | /* SS7PC Name Resolution End*/ | |||
3337 | ||||
3338 | ||||
3339 | /* | |||
3340 | * External Functions | |||
3341 | */ | |||
3342 | ||||
3343 | void | |||
3344 | addr_resolve_pref_init(module_t *nameres) | |||
3345 | { | |||
3346 | prefs_register_bool_preference(nameres, "mac_name", | |||
3347 | "Resolve MAC addresses", | |||
3348 | "Resolve Ethernet MAC addresses to host names from the preferences" | |||
3349 | " or system's Ethers file, or to a manufacturer based name.", | |||
3350 | &gbl_resolv_flags.mac_name); | |||
3351 | ||||
3352 | prefs_register_bool_preference(nameres, "transport_name", | |||
3353 | "Resolve transport names", | |||
3354 | "Resolve TCP/UDP ports into service names", | |||
3355 | &gbl_resolv_flags.transport_name); | |||
3356 | ||||
3357 | prefs_register_bool_preference(nameres, "network_name", | |||
3358 | "Resolve network (IP) addresses", | |||
3359 | "Resolve IPv4, IPv6, and IPX addresses into host names." | |||
3360 | " The next set of check boxes determines how name resolution should be performed." | |||
3361 | " If no other options are checked name resolution is made from Wireshark's host file" | |||
3362 | " and capture file name resolution blocks.", | |||
3363 | &gbl_resolv_flags.network_name); | |||
3364 | ||||
3365 | prefs_register_bool_preference(nameres, "dns_pkt_addr_resolution", | |||
3366 | "Use captured DNS packet data for name resolution", | |||
3367 | "Use address/name pairs found in captured DNS packets for name resolution.", | |||
3368 | &gbl_resolv_flags.dns_pkt_addr_resolution); | |||
3369 | ||||
3370 | prefs_register_bool_preference(nameres, "handshake_sni_addr_resolution", | |||
3371 | "Use SNI information from captured handshake packets", | |||
3372 | "Use the Server Name Indication found in TLS handshakes for name resolution.", | |||
3373 | &gbl_resolv_flags.handshake_sni_addr_resolution); | |||
3374 | ||||
3375 | prefs_register_bool_preference(nameres, "use_external_name_resolver", | |||
3376 | "Use your system's DNS settings for name resolution", | |||
3377 | "Use your system's configured name resolver" | |||
3378 | " (usually DNS) to resolve network names." | |||
3379 | " Only applies when network name resolution" | |||
3380 | " is enabled.", | |||
3381 | &gbl_resolv_flags.use_external_net_name_resolver); | |||
3382 | ||||
3383 | prefs_register_bool_preference(nameres, "use_custom_dns_servers", | |||
3384 | "Use a custom list of DNS servers for name resolution", | |||
3385 | "Use a DNS Servers list to resolve network names if true. If false, default information is used", | |||
3386 | &use_custom_dns_server_list); | |||
3387 | ||||
3388 | static uat_field_t dns_server_uats_flds[] = { | |||
3389 | UAT_FLD_CSTRING_OTHER(dnsserverlist_uats, ipaddr, "IP address", dnsserver_uat_fld_ip_chk_cb, "IPv4 or IPv6 address"){"ipaddr", "IP address", PT_TXTMOD_STRING,{ dnsserver_uat_fld_ip_chk_cb ,dnsserverlist_uats_ipaddr_set_cb,dnsserverlist_uats_ipaddr_tostr_cb },{0,0,0},0,"IPv4 or IPv6 address",((void*)0)}, | |||
3390 | UAT_FLD_CSTRING_OTHER(dnsserverlist_uats, tcp_port, "TCP Port", dnsserver_uat_fld_port_chk_cb, "Port Number (TCP)"){"tcp_port", "TCP Port", PT_TXTMOD_STRING,{ dnsserver_uat_fld_port_chk_cb ,dnsserverlist_uats_tcp_port_set_cb,dnsserverlist_uats_tcp_port_tostr_cb },{0,0,0},0,"Port Number (TCP)",((void*)0)}, | |||
3391 | UAT_FLD_CSTRING_OTHER(dnsserverlist_uats, udp_port, "UDP Port", dnsserver_uat_fld_port_chk_cb, "Port Number (UDP)"){"udp_port", "UDP Port", PT_TXTMOD_STRING,{ dnsserver_uat_fld_port_chk_cb ,dnsserverlist_uats_udp_port_set_cb,dnsserverlist_uats_udp_port_tostr_cb },{0,0,0},0,"Port Number (UDP)",((void*)0)}, | |||
3392 | UAT_END_FIELDS{((void*)0),((void*)0),PT_TXTMOD_NONE,{0,0,0},{0,0,0},0,0,((void *)0)} | |||
3393 | }; | |||
3394 | ||||
3395 | dnsserver_uat = uat_new("DNS Servers", | |||
3396 | sizeof(struct dns_server_data), | |||
3397 | "addr_resolve_dns_servers", /* filename */ | |||
3398 | true1, /* from_profile */ | |||
3399 | &dnsserverlist_uats, /* data_ptr */ | |||
3400 | &ndnsservers, /* numitems_ptr */ | |||
3401 | UAT_AFFECTS_DISSECTION0x00000001, | |||
3402 | NULL((void*)0), | |||
3403 | dns_server_copy_cb, | |||
3404 | NULL((void*)0), | |||
3405 | dns_server_free_cb, | |||
3406 | c_ares_set_dns_servers, | |||
3407 | NULL((void*)0), | |||
3408 | dns_server_uats_flds); | |||
3409 | static const char *dnsserver_uat_defaults[] = { NULL((void*)0), "53", "53" }; | |||
3410 | uat_set_default_values(dnsserver_uat, dnsserver_uat_defaults); | |||
3411 | prefs_register_uat_preference(nameres, "dns_servers", | |||
3412 | "DNS Servers", | |||
3413 | "A table of IPv4 and IPv6 addresses of DNS servers to be used to resolve IP names and addresses", | |||
3414 | dnsserver_uat); | |||
3415 | ||||
3416 | prefs_register_obsolete_preference(nameres, "concurrent_dns"); | |||
3417 | ||||
3418 | prefs_register_uint_preference(nameres, "name_resolve_concurrency", | |||
3419 | "Maximum concurrent requests", | |||
3420 | "The maximum number of DNS requests that may" | |||
3421 | " be active at any time. A large value (many" | |||
3422 | " thousands) might overload the network or make" | |||
3423 | " your DNS server behave badly.", | |||
3424 | 10, | |||
3425 | &name_resolve_concurrency); | |||
3426 | ||||
3427 | prefs_register_obsolete_preference(nameres, "hosts_file_handling"); | |||
3428 | ||||
3429 | prefs_register_bool_preference(nameres, "vlan_name", | |||
3430 | "Resolve VLAN IDs", | |||
3431 | "Resolve VLAN IDs to network names from the preferences \"vlans\" file." | |||
3432 | " Format of the file is: \"ID<Tab>Name\"." | |||
3433 | " One line per VLAN, e.g.: 1 Management", | |||
3434 | &gbl_resolv_flags.vlan_name); | |||
3435 | ||||
3436 | prefs_register_bool_preference(nameres, "ss7_pc_name", | |||
3437 | "Resolve SS7 PCs", | |||
3438 | "Resolve SS7 Point Codes to node names from the profiles \"ss7pcs\" file." | |||
3439 | " Format of the file is: \"Network_Indicator<Dash>PC_Decimal<Tab>Name\"." | |||
3440 | " One line per Point Code, e.g.: 2-1234 MyPointCode1", | |||
3441 | &gbl_resolv_flags.ss7pc_name); | |||
3442 | ||||
3443 | } | |||
3444 | ||||
3445 | void addr_resolve_pref_apply(void) | |||
3446 | { | |||
3447 | c_ares_set_dns_servers(); | |||
3448 | maxmind_db_pref_apply(); | |||
3449 | } | |||
3450 | ||||
3451 | void | |||
3452 | disable_name_resolution(void) { | |||
3453 | gbl_resolv_flags.mac_name = false0; | |||
3454 | gbl_resolv_flags.network_name = false0; | |||
3455 | gbl_resolv_flags.transport_name = false0; | |||
3456 | gbl_resolv_flags.dns_pkt_addr_resolution = false0; | |||
3457 | gbl_resolv_flags.handshake_sni_addr_resolution = false0; | |||
3458 | gbl_resolv_flags.use_external_net_name_resolver = false0; | |||
3459 | gbl_resolv_flags.vlan_name = false0; | |||
3460 | gbl_resolv_flags.ss7pc_name = false0; | |||
3461 | gbl_resolv_flags.maxmind_geoip = false0; | |||
3462 | } | |||
3463 | ||||
3464 | bool_Bool | |||
3465 | host_name_lookup_process(void) { | |||
3466 | struct timeval tv = { 0, 0 }; | |||
3467 | int nfds; | |||
3468 | fd_set rfds, wfds; | |||
3469 | bool_Bool nro = new_resolved_objects; | |||
3470 | ||||
3471 | new_resolved_objects = false0; | |||
3472 | nro |= maxmind_db_lookup_process(); | |||
3473 | ||||
3474 | if (!async_dns_initialized) | |||
3475 | /* c-ares not initialized. Bail out and cancel timers. */ | |||
3476 | return nro; | |||
3477 | ||||
3478 | process_async_dns_queue(); | |||
3479 | ||||
3480 | FD_ZERO(&rfds)do { unsigned int __i; fd_set *__arr = (&rfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
3481 | FD_ZERO(&wfds)do { unsigned int __i; fd_set *__arr = (&wfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
3482 | nfds = ares_fds(ghba_chan, &rfds, &wfds); | |||
3483 | if (nfds > 0) { | |||
3484 | if (select(nfds, &rfds, &wfds, NULL((void*)0), &tv) == -1) { /* call to select() failed */ | |||
3485 | /* If it's interrupted by a signal, no need to put out a message */ | |||
3486 | if (errno(*__errno_location ()) != EINTR4) | |||
3487 | fprintf(stderrstderr, "Warning: call to select() failed, error is %s\n", g_strerror(errno(*__errno_location ()))); | |||
3488 | return nro; | |||
3489 | } | |||
3490 | ares_process(ghba_chan, &rfds, &wfds); | |||
3491 | } | |||
3492 | ||||
3493 | /* Any new entries? */ | |||
3494 | return nro; | |||
3495 | } | |||
3496 | ||||
3497 | static void | |||
3498 | _host_name_lookup_cleanup(void) { | |||
3499 | async_dns_queue_head = NULL((void*)0); | |||
3500 | ||||
3501 | if (async_dns_initialized) { | |||
3502 | ares_destroy(ghba_chan); | |||
3503 | ares_destroy(ghbn_chan); | |||
3504 | } | |||
3505 | #ifdef CARES_HAVE_ARES_LIBRARY_INIT1 | |||
3506 | ares_library_cleanup(); | |||
3507 | #endif | |||
3508 | async_dns_initialized = false0; | |||
3509 | } | |||
3510 | ||||
3511 | const char * | |||
3512 | get_hostname(const unsigned addr) | |||
3513 | { | |||
3514 | /* XXX why do we call this if we're not resolving? To create hash entries? | |||
3515 | * Why? So that we can return a const char*? | |||
3516 | * | |||
3517 | * Note the returned string is in addr_resolv_scope, which has a similar | |||
3518 | * life to the global file scope (slightly larger, in that the resolved | |||
3519 | * addresses need to be available during dissector registration, e.g. | |||
3520 | * for RADIUS and enterprises), so if not copied it is possible to use | |||
3521 | * it after freeing. | |||
3522 | * | |||
3523 | * Should this be deprecated in favor of get_hostname_wmem so that | |||
3524 | * host name lookups don't increase persistent memory usage even when | |||
3525 | * hostname lookups are disabled? (An alternative would be to return | |||
3526 | * NULL when lookups are disabled, but callers don't expect that.) | |||
3527 | */ | |||
3528 | hashipv4_t *tp = host_lookup(addr); | |||
3529 | ||||
3530 | if (!gbl_resolv_flags.network_name) | |||
3531 | return tp->ip; | |||
3532 | ||||
3533 | tp->flags |= RESOLVED_ADDRESS_USED(1U<<2); | |||
3534 | ||||
3535 | return tp->name; | |||
3536 | } | |||
3537 | ||||
3538 | char * | |||
3539 | get_hostname_wmem(wmem_allocator_t *allocator, const unsigned addr) | |||
3540 | { | |||
3541 | if (!gbl_resolv_flags.network_name) | |||
3542 | return ip_addr_to_str(allocator, &addr); | |||
3543 | ||||
3544 | hashipv4_t *tp = host_lookup(addr); | |||
3545 | ||||
3546 | tp->flags |= RESOLVED_ADDRESS_USED(1U<<2); | |||
3547 | ||||
3548 | return wmem_strdup(allocator, tp->name); | |||
3549 | } | |||
3550 | /* -------------------------- */ | |||
3551 | ||||
3552 | const char * | |||
3553 | get_hostname6(const ws_in6_addr *addr) | |||
3554 | { | |||
3555 | /* XXX why do we call this if we're not resolving? To create hash entries? | |||
3556 | * Why? The same comments as get_hostname above apply. | |||
3557 | */ | |||
3558 | hashipv6_t *tp = host_lookup6(addr); | |||
3559 | ||||
3560 | if (!gbl_resolv_flags.network_name) | |||
3561 | return tp->ip6; | |||
3562 | ||||
3563 | tp->flags |= RESOLVED_ADDRESS_USED(1U<<2); | |||
3564 | ||||
3565 | return tp->name; | |||
3566 | } | |||
3567 | ||||
3568 | char * | |||
3569 | get_hostname6_wmem(wmem_allocator_t *allocator, const ws_in6_addr *addr) | |||
3570 | { | |||
3571 | if (!gbl_resolv_flags.network_name) | |||
3572 | return ip6_to_str(allocator, addr); | |||
3573 | ||||
3574 | hashipv6_t *tp = host_lookup6(addr); | |||
3575 | ||||
3576 | tp->flags |= RESOLVED_ADDRESS_USED(1U<<2); | |||
3577 | ||||
3578 | return wmem_strdup(allocator, tp->name); | |||
3579 | } | |||
3580 | /* -------------------------- */ | |||
3581 | void | |||
3582 | add_ipv4_name(const unsigned addr, const char *name, bool_Bool static_entry) | |||
3583 | { | |||
3584 | hashipv4_t *tp; | |||
3585 | ||||
3586 | /* | |||
3587 | * Don't add zero-length names; apparently, some resolvers will return | |||
3588 | * them if they get them from DNS. | |||
3589 | */ | |||
3590 | if (!name || name[0] == '\0') | |||
3591 | return; | |||
3592 | ||||
3593 | tp = (hashipv4_t *)wmem_map_lookup(ipv4_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr))); | |||
3594 | if (!tp) { | |||
3595 | tp = new_ipv4(addr); | |||
3596 | wmem_map_insert(ipv4_hash_table, GUINT_TO_POINTER(addr)((gpointer) (gulong) (addr)), tp); | |||
3597 | } | |||
3598 | ||||
3599 | if (g_ascii_strcasecmp(tp->name, name) && (static_entry || !(tp->flags & STATIC_HOSTNAME(1U<<3)))) { | |||
3600 | (void) g_strlcpy(tp->name, name, MAXDNSNAMELEN256); | |||
3601 | new_resolved_objects = true1; | |||
3602 | if (static_entry) | |||
3603 | tp->flags |= STATIC_HOSTNAME(1U<<3); | |||
3604 | } | |||
3605 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0)|NAME_RESOLVED(1U<<1); | |||
3606 | } /* add_ipv4_name */ | |||
3607 | ||||
3608 | /* -------------------------- */ | |||
3609 | void | |||
3610 | add_ipv6_name(const ws_in6_addr *addrp, const char *name, const bool_Bool static_entry) | |||
3611 | { | |||
3612 | hashipv6_t *tp; | |||
3613 | ||||
3614 | /* | |||
3615 | * Don't add zero-length names; apparently, some resolvers will return | |||
3616 | * them if they get them from DNS. | |||
3617 | */ | |||
3618 | if (!name || name[0] == '\0') | |||
3619 | return; | |||
3620 | ||||
3621 | tp = (hashipv6_t *)wmem_map_lookup(ipv6_hash_table, addrp); | |||
3622 | if (!tp) { | |||
3623 | ws_in6_addr *addr_key; | |||
3624 | ||||
3625 | addr_key = wmem_new(addr_resolv_scope, ws_in6_addr)((ws_in6_addr*)wmem_alloc((addr_resolv_scope), sizeof(ws_in6_addr ))); | |||
3626 | tp = new_ipv6(addrp); | |||
3627 | memcpy(addr_key, addrp, 16); | |||
3628 | wmem_map_insert(ipv6_hash_table, addr_key, tp); | |||
3629 | } | |||
3630 | ||||
3631 | if (g_ascii_strcasecmp(tp->name, name) && (static_entry || !(tp->flags & STATIC_HOSTNAME(1U<<3)))) { | |||
3632 | (void) g_strlcpy(tp->name, name, MAXDNSNAMELEN256); | |||
3633 | new_resolved_objects = true1; | |||
3634 | if (static_entry) | |||
3635 | tp->flags |= STATIC_HOSTNAME(1U<<3); | |||
3636 | } | |||
3637 | tp->flags |= TRIED_RESOLVE_ADDRESS(1U<<0)|NAME_RESOLVED(1U<<1); | |||
3638 | } /* add_ipv6_name */ | |||
3639 | ||||
3640 | static void | |||
3641 | add_manually_resolved_ipv4(void *key, void *value, void *user_data _U___attribute__((unused))) | |||
3642 | { | |||
3643 | resolved_name_t *resolved_ipv4_entry = (resolved_name_t*)value; | |||
3644 | add_ipv4_name(GPOINTER_TO_UINT(key)((guint) (gulong) (key)), resolved_ipv4_entry->name, true1); | |||
3645 | } | |||
3646 | ||||
3647 | static void | |||
3648 | add_manually_resolved_ipv6(void *key, void *value, void *user_data _U___attribute__((unused))) | |||
3649 | { | |||
3650 | resolved_name_t *resolved_ipv6_entry = (resolved_name_t*)value; | |||
3651 | add_ipv6_name((ws_in6_addr*)key, resolved_ipv6_entry->name, true1); | |||
3652 | } | |||
3653 | ||||
3654 | static void | |||
3655 | add_manually_resolved(void) | |||
3656 | { | |||
3657 | if (manually_resolved_ipv4_list) { | |||
3658 | wmem_map_foreach(manually_resolved_ipv4_list, add_manually_resolved_ipv4, NULL((void*)0)); | |||
3659 | } | |||
3660 | ||||
3661 | if (manually_resolved_ipv6_list) { | |||
3662 | wmem_map_foreach(manually_resolved_ipv6_list, add_manually_resolved_ipv6, NULL((void*)0)); | |||
3663 | } | |||
3664 | } | |||
3665 | ||||
3666 | static void | |||
3667 | host_name_lookup_init(void) | |||
3668 | { | |||
3669 | char *hostspath; | |||
3670 | unsigned i; | |||
3671 | ||||
3672 | ws_assert(ipxnet_hash_table == NULL)do { if ((1) && !(ipxnet_hash_table == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 3672, __func__, "assertion failed: %s" , "ipxnet_hash_table == ((void*)0)"); } while (0); | |||
3673 | ipxnet_hash_table = wmem_map_new(addr_resolv_scope, g_direct_hash, g_direct_equal); | |||
3674 | ||||
3675 | ws_assert(ipv4_hash_table == NULL)do { if ((1) && !(ipv4_hash_table == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 3675, __func__, "assertion failed: %s" , "ipv4_hash_table == ((void*)0)"); } while (0); | |||
3676 | ipv4_hash_table = wmem_map_new(addr_resolv_scope, g_direct_hash, g_direct_equal); | |||
3677 | ||||
3678 | ws_assert(ipv6_hash_table == NULL)do { if ((1) && !(ipv6_hash_table == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 3678, __func__, "assertion failed: %s" , "ipv6_hash_table == ((void*)0)"); } while (0); | |||
3679 | ipv6_hash_table = wmem_map_new(addr_resolv_scope, ipv6_oat_hash, ipv6_equal); | |||
3680 | ||||
3681 | ws_assert(async_dns_queue_head == NULL)do { if ((1) && !(async_dns_queue_head == ((void*)0)) ) ws_log_fatal_full("", LOG_LEVEL_ERROR, "epan/addr_resolv.c" , 3681, __func__, "assertion failed: %s", "async_dns_queue_head == ((void*)0)" ); } while (0); | |||
3682 | async_dns_queue_head = wmem_list_new(addr_resolv_scope); | |||
3683 | ||||
3684 | /* | |||
3685 | * The manually resolved lists are the only address resolution maps | |||
3686 | * that are not reset by addr_resolv_cleanup(), because they are | |||
3687 | * the only ones that do not have entries from personal configuration | |||
3688 | * files that can change when changing configurations. All their | |||
3689 | * entries must also be in epan scope. | |||
3690 | */ | |||
3691 | if (manually_resolved_ipv4_list == NULL((void*)0)) | |||
3692 | manually_resolved_ipv4_list = wmem_map_new(wmem_epan_scope(), g_direct_hash, g_direct_equal); | |||
3693 | ||||
3694 | if (manually_resolved_ipv6_list == NULL((void*)0)) | |||
3695 | manually_resolved_ipv6_list = wmem_map_new(wmem_epan_scope(), ws_ipv6_hash, ipv6_equal); | |||
3696 | ||||
3697 | /* | |||
3698 | * Load the global hosts file, if we have one. | |||
3699 | */ | |||
3700 | hostspath = get_datafile_path(ENAME_HOSTS"hosts"); | |||
3701 | if (!read_hosts_file(hostspath, true1) && errno(*__errno_location ()) != ENOENT2) { | |||
3702 | report_open_failure(hostspath, errno(*__errno_location ()), false0); | |||
3703 | } | |||
3704 | g_free(hostspath); | |||
3705 | /* | |||
3706 | * Load the user's hosts file no matter what, if they have one. | |||
3707 | */ | |||
3708 | hostspath = get_persconffile_path(ENAME_HOSTS"hosts", true1); | |||
3709 | if (!read_hosts_file(hostspath, true1) && errno(*__errno_location ()) != ENOENT2) { | |||
3710 | report_open_failure(hostspath, errno(*__errno_location ()), false0); | |||
3711 | } | |||
3712 | g_free(hostspath); | |||
3713 | #ifdef CARES_HAVE_ARES_LIBRARY_INIT1 | |||
3714 | if (ares_library_init(ARES_LIB_INIT_ALL((1 << 0))) == ARES_SUCCESS) { | |||
3715 | #endif | |||
3716 | /* XXX - Check which options we should set */ | |||
3717 | if (ares_init_options(&ghba_chan, NULL((void*)0), 0) == ARES_SUCCESS && ares_init_options(&ghbn_chan, NULL((void*)0), 0) == ARES_SUCCESS) { | |||
3718 | async_dns_initialized = true1; | |||
3719 | c_ares_set_dns_servers(); | |||
3720 | } | |||
3721 | #ifdef CARES_HAVE_ARES_LIBRARY_INIT1 | |||
3722 | } | |||
3723 | #endif | |||
3724 | ||||
3725 | if (extra_hosts_files) { | |||
3726 | for (i = 0; i < extra_hosts_files->len; i++) { | |||
3727 | read_hosts_file((const char *) g_ptr_array_index(extra_hosts_files, i)((extra_hosts_files)->pdata)[i], true1); | |||
3728 | } | |||
3729 | } | |||
3730 | ||||
3731 | subnet_name_lookup_init(); | |||
3732 | ||||
3733 | add_manually_resolved(); | |||
3734 | ||||
3735 | ss7pc_name_lookup_init(); | |||
3736 | } | |||
3737 | ||||
3738 | static void | |||
3739 | host_name_lookup_cleanup(void) | |||
3740 | { | |||
3741 | uint32_t i, j; | |||
3742 | sub_net_hashipv4_t *entry, *next_entry; | |||
3743 | ||||
3744 | _host_name_lookup_cleanup(); | |||
3745 | ||||
3746 | ipxnet_hash_table = NULL((void*)0); | |||
3747 | ipv4_hash_table = NULL((void*)0); | |||
3748 | ipv6_hash_table = NULL((void*)0); | |||
3749 | ss7pc_hash_table = NULL((void*)0); | |||
3750 | ||||
3751 | for(i = 0; i < SUBNETLENGTHSIZE32; ++i) { | |||
3752 | if (subnet_length_entries[i].subnet_addresses != NULL((void*)0)) { | |||
3753 | for (j = 0; j < HASHHOSTSIZE2048; j++) { | |||
3754 | for (entry = subnet_length_entries[i].subnet_addresses[j]; | |||
3755 | entry != NULL((void*)0); entry = next_entry) { | |||
3756 | next_entry = entry->next; | |||
3757 | wmem_free(addr_resolv_scope, entry); | |||
3758 | } | |||
3759 | } | |||
3760 | wmem_free(addr_resolv_scope, subnet_length_entries[i].subnet_addresses); | |||
3761 | subnet_length_entries[i].subnet_addresses = NULL((void*)0); | |||
3762 | } | |||
3763 | } | |||
3764 | ||||
3765 | have_subnet_entry = false0; | |||
3766 | new_resolved_objects = false0; | |||
3767 | } | |||
3768 | ||||
3769 | ||||
3770 | void host_name_lookup_reset(void) | |||
3771 | { | |||
3772 | addr_resolv_cleanup(); | |||
3773 | addr_resolv_init(); | |||
3774 | } | |||
3775 | ||||
3776 | char * | |||
3777 | udp_port_to_display(wmem_allocator_t *allocator, unsigned port) | |||
3778 | { | |||
3779 | ||||
3780 | if (!gbl_resolv_flags.transport_name) { | |||
3781 | return wmem_utoa(allocator, port); | |||
3782 | } | |||
3783 | ||||
3784 | return wmem_strdup(allocator, serv_name_lookup(PT_UDP, port)); | |||
3785 | ||||
3786 | } /* udp_port_to_display */ | |||
3787 | ||||
3788 | char * | |||
3789 | dccp_port_to_display(wmem_allocator_t *allocator, unsigned port) | |||
3790 | { | |||
3791 | ||||
3792 | if (!gbl_resolv_flags.transport_name) { | |||
3793 | return wmem_utoa(allocator, port); | |||
3794 | } | |||
3795 | ||||
3796 | return wmem_strdup(allocator, serv_name_lookup(PT_DCCP, port)); | |||
3797 | ||||
3798 | } /* dccp_port_to_display */ | |||
3799 | ||||
3800 | char * | |||
3801 | tcp_port_to_display(wmem_allocator_t *allocator, unsigned port) | |||
3802 | { | |||
3803 | ||||
3804 | if (!gbl_resolv_flags.transport_name) { | |||
3805 | return wmem_utoa(allocator, port); | |||
3806 | } | |||
3807 | ||||
3808 | return wmem_strdup(allocator, serv_name_lookup(PT_TCP, port)); | |||
3809 | ||||
3810 | } /* tcp_port_to_display */ | |||
3811 | ||||
3812 | char * | |||
3813 | sctp_port_to_display(wmem_allocator_t *allocator, unsigned port) | |||
3814 | { | |||
3815 | ||||
3816 | if (!gbl_resolv_flags.transport_name) { | |||
3817 | return wmem_utoa(allocator, port); | |||
3818 | } | |||
3819 | ||||
3820 | return wmem_strdup(allocator, serv_name_lookup(PT_SCTP, port)); | |||
3821 | ||||
3822 | } /* sctp_port_to_display */ | |||
3823 | ||||
3824 | char * | |||
3825 | port_with_resolution_to_str(wmem_allocator_t *scope, port_type proto, unsigned port) | |||
3826 | { | |||
3827 | const char *port_str; | |||
3828 | ||||
3829 | if (!gbl_resolv_flags.transport_name || (proto == PT_NONE)) { | |||
3830 | /* No name resolution support, just return port string */ | |||
3831 | return wmem_strdup_printf(scope, "%u", port); | |||
3832 | } | |||
3833 | port_str = serv_name_lookup(proto, port); | |||
3834 | ws_assert(port_str)do { if ((1) && !(port_str)) ws_log_fatal_full("", LOG_LEVEL_ERROR , "epan/addr_resolv.c", 3834, __func__, "assertion failed: %s" , "port_str"); } while (0); | |||
3835 | return wmem_strdup_printf(scope, "%s (%u)", port_str, port); | |||
3836 | } | |||
3837 | ||||
3838 | int | |||
3839 | port_with_resolution_to_str_buf(char *buf, unsigned long buf_size, port_type proto, unsigned port) | |||
3840 | { | |||
3841 | const char *port_str; | |||
3842 | ||||
3843 | if (!gbl_resolv_flags.transport_name || (proto == PT_NONE)) { | |||
3844 | /* No name resolution support, just return port string */ | |||
3845 | return snprintf(buf, buf_size, "%u", port); | |||
3846 | } | |||
3847 | port_str = serv_name_lookup(proto, port); | |||
3848 | ws_assert(port_str)do { if ((1) && !(port_str)) ws_log_fatal_full("", LOG_LEVEL_ERROR , "epan/addr_resolv.c", 3848, __func__, "assertion failed: %s" , "port_str"); } while (0); | |||
3849 | return snprintf(buf, buf_size, "%s (%u)", port_str, port); | |||
3850 | } | |||
3851 | ||||
3852 | const char * | |||
3853 | get_ether_name(const uint8_t *addr) | |||
3854 | { | |||
3855 | hashether_t *tp; | |||
3856 | bool_Bool resolve = gbl_resolv_flags.mac_name; | |||
3857 | ||||
3858 | tp = eth_name_lookup(addr, resolve); | |||
3859 | ||||
3860 | return resolve ? tp->resolved_name : tp->hexaddr; | |||
3861 | ||||
3862 | } /* get_ether_name */ | |||
3863 | ||||
3864 | const char * | |||
3865 | tvb_get_ether_name(tvbuff_t *tvb, int offset) | |||
3866 | { | |||
3867 | return get_ether_name(tvb_get_ptr(tvb, offset, 6)); | |||
3868 | } | |||
3869 | ||||
3870 | /* Look for a (non-dummy) ether name in the hash, and return it if found. | |||
3871 | * If it's not found, simply return NULL. | |||
3872 | */ | |||
3873 | const char * | |||
3874 | get_ether_name_if_known(const uint8_t *addr) | |||
3875 | { | |||
3876 | hashether_t *tp; | |||
3877 | ||||
3878 | /* Initialize ether structs if we're the first | |||
3879 | * ether-related function called */ | |||
3880 | if (!gbl_resolv_flags.mac_name) | |||
3881 | return NULL((void*)0); | |||
3882 | ||||
3883 | /* eth_name_lookup will create a (resolved) hash entry | |||
3884 | * if it doesn't exist, so it never returns NULL */ | |||
3885 | tp = eth_name_lookup(addr, true1); | |||
3886 | ||||
3887 | if ((tp->flags & (NAME_RESOLVED(1U<<1) | NAME_RESOLVED_PREFIX(1U<<4))) == NAME_RESOLVED(1U<<1)) { | |||
3888 | /* Name is from an exact match, not a prefix/OUI */ | |||
3889 | return tp->resolved_name; | |||
3890 | } | |||
3891 | else { | |||
3892 | /* Name was created */ | |||
3893 | return NULL((void*)0); | |||
3894 | } | |||
3895 | } | |||
3896 | ||||
3897 | void | |||
3898 | add_ether_byip(const unsigned ip, const uint8_t *eth) | |||
3899 | { | |||
3900 | hashipv4_t *tp; | |||
3901 | ||||
3902 | /* first check that IP address can be resolved */ | |||
3903 | if (!gbl_resolv_flags.network_name) | |||
3904 | return; | |||
3905 | ||||
3906 | tp = host_lookup(ip); | |||
3907 | ||||
3908 | /* | |||
3909 | * Was this IP address resolved to a host name? | |||
3910 | */ | |||
3911 | if (tp->flags & NAME_RESOLVED(1U<<1)) { | |||
3912 | /* | |||
3913 | * Yes, so add an entry in the ethers hashtable resolving | |||
3914 | * the MAC address to that name. | |||
3915 | */ | |||
3916 | add_eth_name(eth, tp->name, false0); | |||
3917 | } | |||
3918 | ||||
3919 | } /* add_ether_byip */ | |||
3920 | ||||
3921 | char * | |||
3922 | get_ipxnet_name(wmem_allocator_t *allocator, const uint32_t addr) | |||
3923 | { | |||
3924 | ||||
3925 | if (!gbl_resolv_flags.network_name) { | |||
| ||||
3926 | return ipxnet_to_str_punct(allocator, addr, '\0'); | |||
3927 | } | |||
3928 | ||||
3929 | return ipxnet_name_lookup(allocator, addr); | |||
3930 | ||||
3931 | } /* get_ipxnet_name */ | |||
3932 | ||||
3933 | char * | |||
3934 | get_vlan_name(wmem_allocator_t *allocator, const uint16_t id) | |||
3935 | { | |||
3936 | ||||
3937 | if (!gbl_resolv_flags.vlan_name) { | |||
3938 | return NULL((void*)0); | |||
3939 | } | |||
3940 | ||||
3941 | return wmem_strdup(allocator, vlan_name_lookup(id)); | |||
3942 | ||||
3943 | } /* get_vlan_name */ | |||
3944 | ||||
3945 | const char * | |||
3946 | get_manuf_name(const uint8_t *addr, size_t size) | |||
3947 | { | |||
3948 | hashmanuf_t *manuf_value; | |||
3949 | ||||
3950 | ws_return_val_if(size < 3, NULL)do { if (1 && (size < 3)) { ws_log_full("InvalidArg" , LOG_LEVEL_WARNING, "epan/addr_resolv.c", 3950, __func__, "invalid argument: %s" , "size < 3"); return (((void*)0)); } } while (0); | |||
3951 | ||||
3952 | manuf_value = manuf_name_lookup(addr, size); | |||
3953 | if (gbl_resolv_flags.mac_name && ((manuf_value->flags & NAME_RESOLVED(1U<<1)) == NAME_RESOLVED(1U<<1))) | |||
3954 | return manuf_value->resolved_name; | |||
3955 | ||||
3956 | return manuf_value->hexaddr; | |||
3957 | ||||
3958 | } /* get_manuf_name */ | |||
3959 | ||||
3960 | const char * | |||
3961 | tvb_get_manuf_name(tvbuff_t *tvb, int offset) | |||
3962 | { | |||
3963 | uint8_t buf[3] = { 0 }; | |||
3964 | tvb_memcpy(tvb, buf, offset, 3); | |||
3965 | return get_manuf_name(buf, sizeof(buf)); | |||
3966 | } | |||
3967 | ||||
3968 | const char * | |||
3969 | get_manuf_name_if_known(const uint8_t *addr, size_t size) | |||
3970 | { | |||
3971 | hashmanuf_t *manuf_value; | |||
3972 | ||||
3973 | ws_return_val_if(size < 3, NULL)do { if (1 && (size < 3)) { ws_log_full("InvalidArg" , LOG_LEVEL_WARNING, "epan/addr_resolv.c", 3973, __func__, "invalid argument: %s" , "size < 3"); return (((void*)0)); } } while (0); | |||
3974 | ||||
3975 | manuf_value = manuf_name_lookup(addr, size); | |||
3976 | if (manuf_value != NULL((void*)0) && ((manuf_value->flags & NAME_RESOLVED(1U<<1)) == NAME_RESOLVED(1U<<1))) { | |||
3977 | return manuf_value->resolved_longname; | |||
3978 | } | |||
3979 | ||||
3980 | if (size >= 6) { | |||
3981 | /* Try the global manuf tables. */ | |||
3982 | const char *short_name, *long_name; | |||
3983 | short_name = ws_manuf_lookup_str(addr, &long_name); | |||
3984 | if (short_name != NULL((void*)0)) { | |||
3985 | /* Found it */ | |||
3986 | return long_name; | |||
3987 | } | |||
3988 | } | |||
3989 | ||||
3990 | return NULL((void*)0); | |||
3991 | ||||
3992 | } /* get_manuf_name_if_known */ | |||
3993 | ||||
3994 | const char * | |||
3995 | uint_get_manuf_name_if_known(const uint32_t manuf_key) | |||
3996 | { | |||
3997 | uint8_t addr[6] = { 0 }; | |||
3998 | addr[0] = (manuf_key >> 16) & 0xFF; | |||
3999 | addr[1] = (manuf_key >> 8) & 0xFF; | |||
4000 | addr[2] = manuf_key & 0xFF; | |||
4001 | ||||
4002 | return get_manuf_name_if_known(addr, sizeof(addr)); | |||
4003 | } | |||
4004 | ||||
4005 | const char * | |||
4006 | tvb_get_manuf_name_if_known(tvbuff_t *tvb, int offset) | |||
4007 | { | |||
4008 | uint8_t buf[3] = { 0 }; | |||
4009 | tvb_memcpy(tvb, buf, offset, 3); | |||
4010 | return get_manuf_name_if_known(buf, sizeof(buf)); | |||
4011 | } | |||
4012 | ||||
4013 | bool_Bool get_hash_manuf_used(hashmanuf_t* manuf) | |||
4014 | { | |||
4015 | return ((manuf->flags & TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))) == TRIED_OR_RESOLVED_MASK((1U<<0) | (1U<<1))); | |||
4016 | } | |||
4017 | ||||
4018 | char* get_hash_manuf_resolved_name(hashmanuf_t* manuf) | |||
4019 | { | |||
4020 | return manuf->resolved_longname; | |||
4021 | } | |||
4022 | ||||
4023 | const char * | |||
4024 | get_eui64_name(const uint8_t *addr) | |||
4025 | { | |||
4026 | hasheui64_t *tp; | |||
4027 | bool_Bool resolve = gbl_resolv_flags.mac_name; | |||
4028 | ||||
4029 | tp = eui64_name_lookup(addr, resolve); | |||
4030 | ||||
4031 | return resolve ? tp->resolved_name : tp->hexaddr; | |||
4032 | ||||
4033 | } /* get_eui64_name */ | |||
4034 | ||||
4035 | char * | |||
4036 | eui64_to_display(wmem_allocator_t *allocator, const uint64_t addr_eui64) | |||
4037 | { | |||
4038 | uint8_t addr[EUI64_ADDR_LEN8]; | |||
4039 | ||||
4040 | phtonu64(addr, addr_eui64); | |||
4041 | ||||
4042 | const char *result = get_eui64_name(addr); | |||
4043 | ||||
4044 | return wmem_strdup(allocator, result); | |||
4045 | } /* eui64_to_display */ | |||
4046 | ||||
4047 | #define GHI_TIMEOUT(250 * 1000) (250 * 1000) | |||
4048 | static void | |||
4049 | c_ares_ghi_cb(void *arg, int status, int timeouts _U___attribute__((unused)), struct hostent *hp) { | |||
4050 | /* | |||
4051 | * XXX - If we wanted to be really fancy we could cache results here and | |||
4052 | * look them up in get_host_ipaddr* below. | |||
4053 | * | |||
4054 | * XXX - This only gets the first host address if there's more than one. | |||
4055 | */ | |||
4056 | async_hostent_t *ahp = (async_hostent_t *)arg; | |||
4057 | if (status == ARES_SUCCESS && hp && ahp && hp->h_length == ahp->addr_size) { | |||
4058 | memcpy(ahp->addrp, hp->h_addrh_addr_list[0], hp->h_length); | |||
4059 | ahp->copied = hp->h_length; | |||
4060 | } | |||
4061 | } | |||
4062 | ||||
4063 | /* Translate a string, assumed either to be a dotted-quad IPv4 address or | |||
4064 | * a host name, to a numeric IPv4 address. Return true if we succeed and | |||
4065 | * set "*addrp" to that numeric IPv4 address; return false if we fail. */ | |||
4066 | bool_Bool | |||
4067 | get_host_ipaddr(const char *host, uint32_t *addrp) | |||
4068 | { | |||
4069 | struct timeval tv = { 0, GHI_TIMEOUT(250 * 1000) }, *tvp; | |||
4070 | int nfds; | |||
4071 | fd_set rfds, wfds; | |||
4072 | async_hostent_t ahe; | |||
4073 | ||||
4074 | /* | |||
4075 | * XXX - are there places where this is used to translate something | |||
4076 | * that's *only* supposed to be an IPv4 address, and where it | |||
4077 | * *shouldn't* translate host names? | |||
4078 | */ | |||
4079 | if (!ws_inet_pton4(host, addrp)) { | |||
4080 | ||||
4081 | /* It's not a valid dotted-quad IP address; is it a valid | |||
4082 | * host name? | |||
4083 | */ | |||
4084 | ||||
4085 | /* If we're not allowed to do name resolution, don't do name | |||
4086 | * resolution... | |||
4087 | * XXX - What if we're allowed to do name resolution, and the name | |||
4088 | * is in a DNS packet we've dissected or in a Name Resolution Block, | |||
4089 | * or a user-entered manual name resolution? | |||
4090 | */ | |||
4091 | if (!gbl_resolv_flags.network_name || | |||
4092 | !gbl_resolv_flags.use_external_net_name_resolver) { | |||
4093 | return false0; | |||
4094 | } | |||
4095 | ||||
4096 | if (!async_dns_initialized || name_resolve_concurrency < 1) { | |||
4097 | return false0; | |||
4098 | } | |||
4099 | ahe.addr_size = (int) sizeof (struct in_addr); | |||
4100 | ahe.copied = 0; | |||
4101 | ahe.addrp = addrp; | |||
4102 | ares_gethostbyname(ghbn_chan, host, AF_INET2, c_ares_ghi_cb, &ahe); | |||
4103 | FD_ZERO(&rfds)do { unsigned int __i; fd_set *__arr = (&rfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
4104 | FD_ZERO(&wfds)do { unsigned int __i; fd_set *__arr = (&wfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
4105 | nfds = ares_fds(ghbn_chan, &rfds, &wfds); | |||
4106 | if (nfds > 0) { | |||
4107 | tvp = ares_timeout(ghbn_chan, &tv, &tv); | |||
4108 | if (select(nfds, &rfds, &wfds, NULL((void*)0), tvp) == -1) { /* call to select() failed */ | |||
4109 | /* If it's interrupted by a signal, no need to put out a message */ | |||
4110 | if (errno(*__errno_location ()) != EINTR4) | |||
4111 | fprintf(stderrstderr, "Warning: call to select() failed, error is %s\n", g_strerror(errno(*__errno_location ()))); | |||
4112 | return false0; | |||
4113 | } | |||
4114 | ares_process(ghbn_chan, &rfds, &wfds); | |||
4115 | } | |||
4116 | ares_cancel(ghbn_chan); | |||
4117 | if (ahe.addr_size == ahe.copied) { | |||
4118 | return true1; | |||
4119 | } | |||
4120 | return false0; | |||
4121 | } | |||
4122 | ||||
4123 | return true1; | |||
4124 | } | |||
4125 | ||||
4126 | /* | |||
4127 | * Translate IPv6 numeric address or FQDN hostname into binary IPv6 address. | |||
4128 | * Return true if we succeed and set "*addrp" to that numeric IPv6 address; | |||
4129 | * return false if we fail. | |||
4130 | */ | |||
4131 | bool_Bool | |||
4132 | get_host_ipaddr6(const char *host, ws_in6_addr *addrp) | |||
4133 | { | |||
4134 | struct timeval tv = { 0, GHI_TIMEOUT(250 * 1000) }, *tvp; | |||
4135 | int nfds; | |||
4136 | fd_set rfds, wfds; | |||
4137 | async_hostent_t ahe; | |||
4138 | ||||
4139 | if (str_to_ip6(host, addrp)) | |||
4140 | return true1; | |||
4141 | ||||
4142 | /* It's not a valid dotted-quad IP address; is it a valid | |||
4143 | * host name? | |||
4144 | * | |||
4145 | * XXX - are there places where this is used to translate something | |||
4146 | * that's *only* supposed to be an IPv6 address, and where it | |||
4147 | * *shouldn't* translate host names? | |||
4148 | */ | |||
4149 | ||||
4150 | /* If we're not allowed to do name resolution, don't do name | |||
4151 | * resolution... | |||
4152 | * XXX - What if we're allowed to do name resolution, and the name | |||
4153 | * is in a DNS packet we've dissected or in a Name Resolution Block, | |||
4154 | * or a user-entered manual name resolution? | |||
4155 | */ | |||
4156 | if (!gbl_resolv_flags.network_name || | |||
4157 | !gbl_resolv_flags.use_external_net_name_resolver) { | |||
4158 | return false0; | |||
4159 | } | |||
4160 | ||||
4161 | /* try FQDN */ | |||
4162 | if (!async_dns_initialized || name_resolve_concurrency < 1) { | |||
4163 | return false0; | |||
4164 | } | |||
4165 | ahe.addr_size = (int) sizeof (ws_in6_addr); | |||
4166 | ahe.copied = 0; | |||
4167 | ahe.addrp = addrp; | |||
4168 | ares_gethostbyname(ghbn_chan, host, AF_INET610, c_ares_ghi_cb, &ahe); | |||
4169 | FD_ZERO(&rfds)do { unsigned int __i; fd_set *__arr = (&rfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
4170 | FD_ZERO(&wfds)do { unsigned int __i; fd_set *__arr = (&wfds); for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) ((__arr )->__fds_bits)[__i] = 0; } while (0); | |||
4171 | nfds = ares_fds(ghbn_chan, &rfds, &wfds); | |||
4172 | if (nfds > 0) { | |||
4173 | tvp = ares_timeout(ghbn_chan, &tv, &tv); | |||
4174 | if (select(nfds, &rfds, &wfds, NULL((void*)0), tvp) == -1) { /* call to select() failed */ | |||
4175 | /* If it's interrupted by a signal, no need to put out a message */ | |||
4176 | if (errno(*__errno_location ()) != EINTR4) | |||
4177 | fprintf(stderrstderr, "Warning: call to select() failed, error is %s\n", g_strerror(errno(*__errno_location ()))); | |||
4178 | return false0; | |||
4179 | } | |||
4180 | ares_process(ghbn_chan, &rfds, &wfds); | |||
4181 | } | |||
4182 | ares_cancel(ghbn_chan); | |||
4183 | if (ahe.addr_size == ahe.copied) { | |||
4184 | return true1; | |||
4185 | } | |||
4186 | ||||
4187 | return false0; | |||
4188 | } | |||
4189 | ||||
4190 | wmem_map_t * | |||
4191 | get_manuf_hashtable(void) | |||
4192 | { | |||
4193 | return manuf_hashtable; | |||
4194 | } | |||
4195 | ||||
4196 | wmem_map_t * | |||
4197 | get_wka_hashtable(void) | |||
4198 | { | |||
4199 | return wka_hashtable; | |||
4200 | } | |||
4201 | ||||
4202 | wmem_map_t * | |||
4203 | get_eth_hashtable(void) | |||
4204 | { | |||
4205 | return eth_hashtable; | |||
4206 | } | |||
4207 | ||||
4208 | wmem_map_t * | |||
4209 | get_serv_port_hashtable(void) | |||
4210 | { | |||
4211 | return serv_port_hashtable; | |||
4212 | } | |||
4213 | ||||
4214 | wmem_map_t * | |||
4215 | get_ipxnet_hash_table(void) | |||
4216 | { | |||
4217 | return ipxnet_hash_table; | |||
4218 | } | |||
4219 | ||||
4220 | wmem_map_t * | |||
4221 | get_vlan_hash_table(void) | |||
4222 | { | |||
4223 | return vlan_hash_table; | |||
4224 | } | |||
4225 | ||||
4226 | wmem_map_t * | |||
4227 | get_ipv4_hash_table(void) | |||
4228 | { | |||
4229 | return ipv4_hash_table; | |||
4230 | } | |||
4231 | ||||
4232 | wmem_map_t * | |||
4233 | get_ipv6_hash_table(void) | |||
4234 | { | |||
4235 | return ipv6_hash_table; | |||
4236 | } | |||
4237 | /* Initialize all the address resolution subsystems in this file */ | |||
4238 | void | |||
4239 | addr_resolv_init(void) | |||
4240 | { | |||
4241 | ws_assert(addr_resolv_scope == NULL)do { if ((1) && !(addr_resolv_scope == ((void*)0))) ws_log_fatal_full ("", LOG_LEVEL_ERROR, "epan/addr_resolv.c", 4241, __func__, "assertion failed: %s" , "addr_resolv_scope == ((void*)0)"); } while (0); | |||
4242 | addr_resolv_scope = wmem_allocator_new(WMEM_ALLOCATOR_BLOCK); | |||
4243 | initialize_services(); | |||
4244 | initialize_ethers(); | |||
4245 | initialize_ipxnets(); | |||
4246 | initialize_vlans(); | |||
4247 | initialize_enterprises(); | |||
4248 | host_name_lookup_init(); | |||
4249 | } | |||
4250 | ||||
4251 | /* Clean up all the address resolution subsystems in this file */ | |||
4252 | void | |||
4253 | addr_resolv_cleanup(void) | |||
4254 | { | |||
4255 | vlan_name_lookup_cleanup(); | |||
4256 | service_name_lookup_cleanup(); | |||
4257 | ethers_cleanup(); | |||
4258 | ipx_name_lookup_cleanup(); | |||
4259 | enterprises_cleanup(); | |||
4260 | host_name_lookup_cleanup(); | |||
4261 | ||||
4262 | wmem_destroy_allocator(addr_resolv_scope); | |||
4263 | addr_resolv_scope = NULL((void*)0); | |||
4264 | } | |||
4265 | ||||
4266 | bool_Bool | |||
4267 | str_to_ip(const char *str, void *dst) | |||
4268 | { | |||
4269 | return ws_inet_pton4(str, (uint32_t *)dst); | |||
4270 | } | |||
4271 | ||||
4272 | bool_Bool | |||
4273 | str_to_ip6(const char *str, void *dst) | |||
4274 | { | |||
4275 | return ws_inet_pton6(str, (ws_in6_addr *)dst); | |||
4276 | } | |||
4277 | ||||
4278 | /* | |||
4279 | * convert a 0-terminated string that contains an ethernet address into | |||
4280 | * the corresponding sequence of 6 bytes | |||
4281 | * eth_bytes is a buffer >= 6 bytes that was allocated by the caller | |||
4282 | */ | |||
4283 | bool_Bool | |||
4284 | str_to_eth(const char *str, char *eth_bytes) | |||
4285 | { | |||
4286 | ether_t eth; | |||
4287 | unsigned mask; | |||
4288 | ||||
4289 | if (!parse_ether_address(str, ð, &mask, false0)) | |||
4290 | return false0; | |||
4291 | ||||
4292 | if (mask == 48) { | |||
4293 | memcpy(eth_bytes, eth.addr, 6); | |||
4294 | } | |||
4295 | return true1; | |||
4296 | } | |||
4297 | ||||
4298 | /* | |||
4299 | * Editor modelines - https://www.wireshark.org/tools/modelines.html | |||
4300 | * | |||
4301 | * Local variables: | |||
4302 | * c-basic-offset: 4 | |||
4303 | * tab-width: 8 | |||
4304 | * indent-tabs-mode: nil | |||
4305 | * End: | |||
4306 | * | |||
4307 | * vi: set shiftwidth=4 tabstop=8 expandtab: | |||
4308 | * :indentSize=4:tabSize=8:noTabs=true: | |||
4309 | */ |