SYNOPSIS

stratoshark [ -i <capture source>|- ] [ -f <capture filter> ] [ -Y <display filter> ] [ -w <outfile> ] [ options ] [ <infile> ]

stratoshark -h|--help

stratoshark -v|--version

DESCRIPTION

Stratoshark is a GUI system call and log analyzer. It lets you interactively browse system calls and log messages from a live system or from a previously saved capture file. Stratoshark's native capture file format is scap, which is used by the sysdig CLI tool and by Falco.

Stratoshark's main window shows 3 views of each event. It shows a summary line, briefly describing what the event is. An event details display is shown, allowing you to drill down to exact field that you interested in. Finally, a hex dump shows you exactly what the event data looks like on disk or over the wire.

In addition, Stratoshark has some features that make it unique. It can assemble all the syscalls in a file descriptor stream and show you the ASCII (or EBCDIC, or hex) data in that conversation. Display filters in Stratoshark are very powerful; more fields are filterable in Stratoshark than in other tools, and the syntax you can use to create your filters is richer. As Stratoshark progresses, expect more and more fields to be supported.

Event capturing is performed by the libscap and libsinsp libraries. The capture filter syntax follows the rules of the libscap. This syntax is different from the display filter syntax.

Compressed file support uses (and therefore requires) the zlib library. If the zlib library is not present, Stratoshark will compile, but will be unable to read compressed files.

The pathname of a capture file to be read can be specified with the -r option or can be specified as a command-line argument.

OPTIONS

Stratoshark supports a wide variety of command line options. Most users will want to start it without any options and configure it from the application menus instead. Those users may wish to skip this section.

-a|--autostop <capture autostop condition>

Specify a criterion that specifies when Stratoshark should stop writing to a capture file. The criterion is of the form test:value, where test is one of:

duration:value Stop writing to a capture file after value seconds have elapsed. Floating point values (e.g. 0.5) are allowed.

files:value Stop writing to capture files after value number of files were written.

filesize:value Stop writing to a capture file after it reaches a size of value kB. If this option is used together with the -b option, Stratoshark will stop writing to the current capture file and switch to the next one if filesize is reached. Note that the filesize is limited to a maximum value of 2 TB, although you might have problems viewing the file in the GUI before then if the number of events exceeds 231 (2147483648).

events:value Stop writing to a capture file after it contains value events. Acts the same as -c<capture event count>.

-b|--ring-buffer <capture ring buffer option>

Cause Stratoshark to run in "multiple files" mode. In "multiple files" mode, Stratoshark will write to several capture files. When the first capture file fills up, Stratoshark will switch writing to the next file and so on.

The created filenames are based on the filename given with the -w flag, the number of the file and on the creation date and time, e.g. outfile_00001_20250714120117.pcap, outfile_00002_20250714120523.pcap, …​

With the files option it’s also possible to form a "ring buffer". This will fill up new files until the number of files specified, at which point Stratoshark will discard the data in the first file and start writing to that file and so on. If the files option is not set, new files filled up until one of the capture stop conditions match (or until the disk is full).

The criterion is of the form key:value, where key is one of:

duration:value switch to the next file after value seconds have elapsed, even if the current file is not completely filled up. Floating point values (e.g. 0.5) are allowed.

files:value begin again with the first file after value number of files were written (form a ring buffer). This value must be less than 100000. Caution should be used when using large numbers of files: some filesystems do not handle many files in a single directory well. The files criterion requires one of the other criteria to be specified to control when to go to the next file. It should be noted that each -b parameter takes exactly one criterion; to specify two criteria, each must be preceded by the -b option.

filesize:value switch to the next file after it reaches a size of value kB. Note that the filesize is limited to a maximum value of 2 TB, although you might have problems viewing the file in the GUI before then if the number of events exceeds 231 (2147483648).

interval:value switch to the next file when the time is an exact multiple of value seconds.

events:value switch to the next file after it contains value events.

Example: -b filesize:1000 -b files:5 results in a ring buffer of five files of size one megabyte each.

-c <capture event count>

Set the maximum number of events to read when capturing live data. Acts the same as -a events:<capture event count>.

-C <configuration profile>

Start with the given configuration profile.

--capture-comment <comment>

When performing a capture file from the command line, with the -k flag, add a capture comment to the output file, if supported by the capture format.

This option may be specified multiple times. Note that Stratoshark currently only displays the first comment of a capture file.

-D|--list-interfaces

Print a list of the interfaces on which Stratoshark can capture, and exit. For each network interface, a number and an interface name, possibly followed by a text description of the interface, is printed. The interface name or the number can be supplied to the -i flag to specify an interface on which to capture. The number can be useful on Windows systems, where the interfaces have long names that usually contain a GUID.

--display <X display to use>

Specifies the X display to use. A hostname and screen (otherhost:0.0) or just a screen (:0.0) can be specified. This option is not available under macOS or Windows.

-f <capture filter>

Set the capture filter expression.

This option can occur multiple times. If used before the first occurrence of the -i option, it sets the default capture filter expression. If used after an -i option, it sets the capture filter expression for the interface specified by the last -i option occurring before this option. If the capture filter expression is not set specifically, the default capture filter expression is used if provided.

Pre-defined capture filter names, as shown in the GUI menu item Capture→Capture Filters, can be used by prefixing the argument with "predef:". Example: -f "predef:MyPredefinedHostOnlyFilter"

--fullscreen

Start Stratoshark in full screen mode (kiosk mode). To exit from fullscreen mode, open the View menu and select the Full Screen option. Alternatively, press the F11 key (or Ctrl + Cmd + F for macOS).

-g <event number>

After reading in a capture file using the -r flag, go to the given event number.

-h|--help

Print the version number and options and exit.

-H

Hide the capture info dialog during live capture.

-i|--interface <capture source>|-

Set the name of the capture source or pipe to use for live capture.

Capture source names should match one of the names or numbers listed in "stratoshark -D" (described above).

If no source is specified, Stratoshark searches the list of interfaces, choosing the first interface. If there are no interfaces at all, Stratoshark reports an error and doesn’t start the capture.

Pipe names should be either the name of a FIFO (named pipe) or "-" to read data from the standard input. On Windows systems, pipe names must be of the form "\\.\pipe\pipename". Data read from pipes must be in standard scap format. Scap data must have the same endianness as the capturing host.

This option can occur multiple times.

-j

Use after -J to change the behavior when no exact match is found for the filter. With this option select the first event before.

-J <jump filter>

After reading in a capture file using the -r flag, jump to the event matching the filter (display filter syntax). If no exact match is found the first event after that is selected.

-k

Start the capture session immediately. If the -i flag was specified, the capture uses the specified source. Otherwise, Stratoshark searches the list of interfaces, the first source. If there are no interfaces, Stratoshark reports an error and doesn’t start the capture.

-l

Turn on automatic scrolling if the event display is being updated automatically as events arrive during a capture (as specified by the -S flag).

-o <preference/recent setting>

Set a preference or recent value, overriding the default value and any value read from a preference/recent file. The argument to the flag is a string of the form prefname:value, where prefname is the name of the preference/recent value (which is the same name that would appear in the preference/recent file), and value is the value to which it should be set.

If prefname is "uat", you can override settings in various user access tables using the form "uat:uat filename:uat record". uat filename must be the name of a UAT file, e.g. user_dlts. uat_record must be in the form of a valid record for that file, including quotes. For instance, to specify a user DLT from the command line, you would use

-o "uat:user_dlts:\"User 0 (DLT=147)\",\"cops\",\"0\",\"\",\"0\",\"\""
-P <path setting>

Special path settings usually detected automatically. This is used for special cases, e.g. starting Stratoshark from a known location on an USB stick.

The criterion is of the form key:path, where key is one of:

persconf:path path of personal configuration files, like the preferences files.

persdata:path path of personal data files, it’s the folder initially opened. After the very first initialization, the recent file will keep the folder last used.

-r|--read-file <infile>

Read event data from infile, can be any supported capture file format (including compressed files). It’s not possible to use named pipes or stdin here, unlike TShark! To capture from a pipe or from stdin use -i -.

-R|--read-filter <read (display) filter>

When reading a capture file specified with the -r flag, causes the specified filter (which uses the syntax of display filters, rather than that of capture filters) to be applied to all events read from the capture file; events not matching the filter are discarded.

-s|--snapshot-length <capture snaplen>

Set the default snapshot length to use when capturing live data. No more than snaplen bytes of each network event will be read into memory, or saved to disk. A value of 0 specifies a snapshot length of 262144, so that the full event is captured; this is the default.

This option can occur multiple times. If used before the first occurrence of the -i option, it sets the default snapshot length. If used after an -i option, it sets the snapshot length for the interface specified by the last -i option occurring before this option. If the snapshot length is not set specifically, the default snapshot length is used if provided.

-S

Automatically update the event display as events are coming in.

--temp-dir <directory>

Specifies the directory into which temporary files (including capture files) are to be written. The default behavior on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, is to use the environment variable $TMPDIR if set, and the system default, typically /tmp, if it is not. On Windows, the %TEMP% environment variable is used, which typically defaults to %USERPROFILE%\AppData\Local\Temp.

--time-stamp-type <type>

Change the interface’s timestamp method. See --list-time-stamp-types.

--update-interval <interval>

Set the length of time in milliseconds between new event reports during a capture. Also sets the granularity of file duration conditions. The default value is 100ms.

-v|--version

Print the full version information and exit.

-w <outfile>

Set the default capture file name, or '-' for standard output.

-X <eXtension options>

Specify an option to be passed to an Stratoshark module. The eXtension option is in the form extension_key:value, where extension_key can be:

lua_script:lua_script_filename tells Stratoshark to load the given script in addition to the default Lua scripts.

lua_scriptnum:argument tells Stratoshark to pass the given argument to the lua script identified by 'num', which is the number indexed order of the 'lua_script' command. For example, if only one script was loaded with '-X lua_script:my.lua', then '-X lua_script1:foo' will pass the string 'foo' to the 'my.lua' script. If two scripts were loaded, such as '-X lua_script:my.lua' and '-X lua_script:other.lua' in that order, then a '-X lua_script2:bar' would pass the string 'bar' to the second lua script, namely 'other.lua'.

stdin_descr:description tells Stratoshark to use the given description when capturing from standard input (-i -).

-Y|--display-filter <displaY filter>

Start with the given display filter.

-z <statistics>

Get Stratoshark to collect various types of statistics and display the result in a window that updates in semi-real time.

Some of the currently implemented statistics are:

-z help

Display all possible values for -z.

DISSECTION OPTIONS

-d <layer type>==<selector>,<decode-as protocol>

Like Wireshark’s Decode As…​ feature, this lets you specify how a layer type should be dissected. If the layer type in question (for example, tcp.port or udp.port for a TCP or UDP port number) has the specified selector value, packets should be dissected as the specified protocol.

Example 1. Decode As Port
-d tcp.port==8888,http will decode any traffic running over TCP port 8888 as HTTP.

See the tshark(1) manual page for more examples.

--disable-all-protocols

Disable dissection of all protocols.

--disable-protocol <proto_name>[,<proto_name>,…​]

Disable dissection of proto_name. Use a proto_name of ALL to override your chosen profile’s default enabled protocol list and temporarily disable all protocols.

--disable-heuristic <short_name>

Disable dissection of heuristic protocol.

--enable-protocol <proto_name>[,<proto_name>,…​]

Enable dissection of proto_name. Use a proto_name of ALL to override your chosen profile’s default disabled protocol list and temporarily enable all protocols which are enabled by default.

If a protocol is implicated in both --disable-protocol and --enable-protocol, the protocol is enabled. This allows you to temporarily disable all protocols but a list of exceptions. Example: --disable-protocol ALL --enable-protocol eth,ip

--enable-heuristic <short_name>

Enable dissection of heuristic protocol.

-K <keytab>

Load kerberos crypto keys from the specified keytab file. This option can be used multiple times to load keys from several files.

Example: -K krb5.keytab

-n

Disable network object name resolution (such as hostname, TCP and UDP port names); the -N option might override this one.

-N <name resolving flags>

Turn on name resolving only for particular types of addresses and port numbers, with name resolving for other types of addresses and port numbers turned off. This option (along with -n) can be specified multiple times; the last value given overrides earlier ones. This option and -n override the options from the preferences, including preferences set via the -o option. If both -N and -n options are not present, the values from the preferences are used, which default to -N dmN.

The argument is a string that may contain the letters:

d to enable resolution from captured DNS packets

g to enable IP address geolocation information lookup from configured MaxMind databases

m to enable MAC address resolution

n to enable network address resolution

N to enable using external resolvers (e.g., DNS) for network address resolution; no effect without n also enabled.

s to enable address resolution using SNI information found in captured handshake packets

t to enable transport-layer port number resolution

v to enable VLAN IDs to names resolution

--only-protocols <protocols>

Only enable dissection of these protocols, comma separated. Disable everything else.

-t (a|ad|adoy|d|dd|e|r|u|ud|udoy)[.[N]]|.[N]

Set the format of the packet timestamp displayed in the default time column. The format can be one of:

a absolute: The absolute time, as local time in your time zone, is the actual time the packet was captured, with no date displayed

ad absolute with date: The absolute date, displayed as YYYY-MM-DD, and time, as local time in your time zone, is the actual time and date the packet was captured

adoy absolute with date using day of year: The absolute date, displayed as YYYY/DOY, and time, as local time in your time zone, is the actual time and date the packet was captured

d delta: The delta time is the time since the previous packet was captured

dd delta_displayed: The delta_displayed time is the time since the previous displayed packet was captured

e epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)

r relative: The relative time is the time elapsed between the first packet and the current packet

u UTC: The absolute time, as UTC with a "Z" suffix, is the actual time the packet was captured, with no date displayed

ud UTC with date: The absolute date, displayed as YYYY-MM-DD, and time, as UTC with a "Z" suffix, is the actual time and date the packet was captured

udoy UTC with date using day of year: The absolute date, displayed as YYYY/DOY, and time, as UTC with a "Z" suffix, is the actual time and date the packet was captured

.[N] Set the precision: N is the number of decimals (0 through 9). If using "." without N, automatically determine precision from trace.

The default format is relative with precision based on capture format.

-u <s|hms>

Specifies how packet timestamp formats in -t which are relative times (i.e. relative, delta, and delta_displayed) are displayed. Valid choices are:

s for seconds

hms for hours, minutes, and seconds

The default format is seconds.

DIAGNOSTIC OPTIONS

--log-level <level>

Set the active log level. Supported levels in lowest to highest order are "noisy", "debug", "info", "message", "warning", "critical", and "error". Messages at each level and higher will be printed, for example "warning" prints "warning", "critical", and "error" messages and "noisy" prints all messages. Levels are case insensitive.

--log-fatal <level>

Abort the program if any messages are logged at the specified level or higher. For example, "warning" aborts on any "warning", "critical", or "error" messages.

--log-domains <list>

Only print messages for the specified log domains, e.g. "GUI,Epan,sshdump". List of domains must be comma-separated. Can be negated with "!" as the first character (inverts the match).

--log-debug <list>

Force the specified domains to log at the "debug" level. List of domains must be comma-separated. Can be negated with "!" as the first character (inverts the match).

--log-noisy <list>

Force the specified domains to log at the "noisy" level. List of domains must be comma-separated. Can be negated with "!" as the first character (inverts the match).

--log-fatal-domains <list>

Abort the program if any messages are logged for the specified log domains. List of domains must be comma-separated.

--log-file <path>

Write log messages and stderr output to the specified file.

FILES

These files contain various Wireshark configuration settings.

Preferences

The preferences files contain global (system-wide) and personal preference settings. If the system-wide preference file exists, it is read first, overriding the default settings. If the personal preferences file exists, it is read next, overriding any previous values. Note: If the command line flag -o is used (possibly more than once), it will in turn override values from the preferences files.

The preferences settings are in the form prefname:value, one per line, where prefname is the name of the preference and value is the value to which it should be set; white space is allowed between : and value. A preference setting can be continued on subsequent lines by indenting the continuation lines with white space. A # character starts a comment that runs to the end of the line:

# Vertical scrollbars should be on right side?
# TRUE or FALSE (case-insensitive).
gui.scrollbar_on_right: TRUE

The global preferences file is looked for in the wireshark directory under the share subdirectory of the main installation directory. On macOS, this would typically be /Application/Wireshark.app/Contents/Resources/share; on other UNIX-compatible systems, such as Linux, \*BSD, Solaris, and AIX, this would typically be /usr/share/wireshark/preferences for system-installed packages and /usr/local/share/wireshark/preferences for locally-installed packages; on Windows, this would typically be C:\Program Files\Wireshark\preferences.

On UNIX-compatible systems, the personal preferences file is looked for in $XDG_CONFIG_HOME/wireshark/preferences, (or, if $XDG_CONFIG_HOME/wireshark does not exist while $HOME/.wireshark does exist, $HOME/.wireshark/preferences); this is typically $HOME/.config/wireshark/preferences. On Windows, the personal preferences file is looked for in %APPDATA%\Wireshark\preferences (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark\preferences).

Note: Whenever the preferences are saved by using the Save button in the Edit:Preferences dialog box, your personal preferences file will be overwritten with the new settings, destroying any comments and unknown/obsolete settings that were in the file.

Recent

The recent file contains personal settings (mostly GUI related) such as the current Wireshark window size. The file is saved at program exit and read in at program start automatically. Note: The command line flag -o may be used to override settings from this file.

The settings in this file have the same format as in the preferences files, and the same directory as for the personal preferences file is used.

Note: Whenever Wireshark is closed, your recent file will be overwritten with the new settings, destroying any comments and unknown/obsolete settings that were in the file.

Disabled (Enabled) Protocols

The disabled_protos files contain system-wide and personal lists of protocols that have been disabled, so that their dissectors are never called. The files contain protocol names, one per line, where the protocol name is the same name that would be used in a display filter for the protocol:

http
tcp     # a comment

If a protocol is listed in the global disabled_protos file it cannot be enabled by the user. Thus it is not displayed in the Analyze::Enabled Protocols dialog box.

The global disabled_protos file uses the same directory as the global preferences file.

The personal disabled_protos file uses the same directory as the personal preferences file.

The disabled_protos files list only protocols that are enabled by default but have been disabled; protocols that are disabled by default (such as some postdissectors) are not listed. There are analogous enabled_protos files for protocols that are disabled by default but have been enabled.

Note: Whenever the disabled protocols list is saved by using the Save button in the Analyze:Enabled Protocols dialog box, your personal disabled protocols file will be overwritten with the new settings, destroying any comments that were in the file.

Heuristic Dissectors

The heuristic_protos files contain system-wide and personal lists of heuristic dissectors and indicate whether they are enabled or disabled. The files contain heuristic dissector unique short names, one per line, followed by a comma and 0 for disabled and 1 for enabled:

quic,1
rtcp_stun,1
rtcp_udp,1
rtp_stun,0
rtp_udp,0
tls_tcp,1

The global heuristic_protos file uses the same directory as the global preferences file.

The personal heuristic_protos file uses the same directory as the personal preferences file.

Name Resolution (hosts)

Entries in hosts files in the global and personal preferences directory are used to resolve IPv4 and IPv6 addresses before any other attempts are made to resolve them. The file has the standard hosts file syntax; each line contains one IP address and name, separated by whitespace. The personal hosts file, if present, overrides the one in the global directory.

Capture filter name resolution is handled by libpcap on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and Npcap on Windows. As such the Wireshark personal hosts file will not be consulted for capture filter name resolution.

Name Resolution (subnets)

If an IPv4 address cannot be translated via name resolution (no exact match is found) then a partial match is attempted via the subnets file. Both the global subnets file and personal subnets files are used if they exist.

Each line of this file consists of an IPv4 address, a subnet mask length separated only by a / and a name separated by whitespace. While the address must be a full IPv4 address, any values beyond the mask length are subsequently ignored.

An example is:

# Comments must be prepended by the # sign! 192.168.0.0/24 ws_test_network

A partially matched name will be printed as "subnet-name.remaining-address". For example, "192.168.0.1" under the subnet above would be printed as "ws_test_network.1"; if the mask length above had been 16 rather than 24, the printed address would be "ws_test_network.0.1".

Name Resolution (ethers)

The ethers files are consulted to correlate 6-byte EUI-48 and 8-byte EUI-64 hardware addresses to names. First the personal ethers file is tried and if an address is not found there the global ethers file is tried next.

The file has a similar format to that defined by ethers(5) on some UNIX-like systems. Each line contains one hardware address and name, separated by whitespace (tabs or spaces). The hexadecimal digits of the hardware address are separated by colons (:), dashes (-) or periods (.). The same separator character must be used consistently in an address. A # indicates a comment that extends to the rest of the line. Both 6-byte MAC and 8-byte EUI-64 addresses are supported. The following four lines are valid lines of an ethers file:

ff:ff:ff:ff:ff:ff          Broadcast
c0-00-ff-ff-ff-ff          TR_broadcast
00.00.00.00.00.00          Zero_broadcast
00:00:00:00:00:00:00:00    EUI64_zero_broadcast

Note that this accepts a greater variety of formats than the file defined by ethers(5) on most UN*X systems.

The global ethers file is looked for in the /etc directory on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.

The personal ethers file is looked for in the same directory as the personal preferences file.

Capture filter name resolution is handled by libpcap on UNIX-compatible systems and Npcap on Windows. As such the Wireshark personal ethers file will not be consulted for capture filter name resolution.

Name Resolution (manuf)

The manuf file is used to match the 3-byte vendor portion of a 6-byte hardware address with the manufacturer’s name; it can also contain well-known MAC addresses and address ranges specified with a netmask. The format of the file is similar the ethers files, except that entries such as:

00:00:0C      Cisco     Cisco Systems, Inc

can be provided, with the 3-byte OUI and both an abbreviated and long name for a vendor, and entries such as:

00-00-0C-07-AC/40     All-HSRP-routers

can be specified, with a MAC address and a mask indicating how many bits of the address must match. The above entry, for example, has 40 significant bits, or 5 bytes, and would match addresses from 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a multiple of 8.

A global manuf file is looked for in the same directory as the global preferences file, and a personal manuf file is looked for in the same directory as the personal preferences file.

In earlier versions of Wireshark, official information from the IEEE Registration Authority was distributed in this format as the global manuf file. This information is now compiled in to speed program startup, but the internal information can be written out in this format with tshark -G manuf.

In addition to the manuf file, another file with the same format, wka, is looked for in the global directory. This file is distributed with Wireshark, and contains data about well-known MAC adddresses and address ranges assembled from various non IEEE but respected sources.

Name Resolution (services)

The services file is used to translate port numbers into names. Both the global services file and personal services files are used if they exist.

The file has the standard services file syntax; each line contains one (service) name and one transport identifier separated by white space. The transport identifier includes one port number and one transport protocol name (typically tcp, udp, or sctp) separated by a /.

An example is:

mydns 5045/udp # My own Domain Name Server mydns 5045/tcp # My own Domain Name Server

In earlier versions of Wireshark, official information from the IANA Registry was distributed in this format as the global services file. This information is now compiled in to speed program startup, but the internal information can be written out in this format with tshark -G services.

Name Resolution (ipxnets)

The ipxnets files are used to correlate 4-byte IPX network numbers to names. First the global ipxnets file is tried and if that address is not found there the personal one is tried next.

The format is the same as the ethers file, except that each address is four bytes instead of six. Additionally, the address can be represented as a single hexadecimal number, as is more common in the IPX world, rather than four hex octets. For example, these four lines are valid lines of an ipxnets file:

C0.A8.2C.00              HR
c0-a8-1c-00              CEO
00:00:BE:EF              IT_Server1
110f                     FileServer3

The global ipxnets file is looked for in the /etc directory on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.

The personal ipxnets file is looked for in the same directory as the personal preferences file.

Name Resolution (ss7pcs)

The ss7pcs file is used to translate SS7 point codes to names. It is read from the personal configuration directory.

Each line in this file consists of one network indicator followed by a dash followed by a point code in decimal and a node name separated by whitespace. An example is:

2-1234 MyPointCode1
Name Resolution (vlans)

The vlans file is used to translate VLAN tag IDs into names. It is read from the personal configuration directory.

Each line in this file consists of one VLAN tag ID separated by whitespace from a name. An example is:

123    Server-Lan
2049   HR-Client-LAN
Capture Filters

The cfilters files contain system-wide and personal capture filters. Each line contains one filter, starting with the string displayed in the dialog box in quotation marks, followed by the filter string itself:

"HTTP" port 80
"DCERPC" port 135

The global cfilters file uses the same directory as the global preferences file.

The personal cfilters file uses the same directory as the personal preferences file. It is written through the Capture:Capture Filters dialog.

If the global cfilters file exists, it is used only if the personal cfilters file does not exist; global and personal capture filters are not merged.

Display Filters

The dfilters files contain system-wide and personal display filters. Each line contains one filter, starting with the string displayed in the dialog box in quotation marks, followed by the filter string itself:

"HTTP" http
"DCERPC" dcerpc

The global dfilters file uses the same directory as the global preferences file.

The personal dfilters file uses the same directory as the personal preferences file. It is written through the Analyze:Display Filters dialog.

If the global dfilters file exists, it is used only if the personal dfilters file does not exist; global and personal display filters are not merged.

Display Filter Macros

The dmacros files contain system-wide and personal display filter macros. Each line contains one filter, starting with the string displayed in the dialog box in quotation marks, followed by the macro expression itself:

"private_ipv6" ipv6 && $1 == fc00::/7
"private_ethernet" $1[0] & 0x0F == 2
"private_ipv4" $1 == 192.168.0.0/16 or $1 == 172.16.0.0/12 or $1 == 10.0.0.0/8

The global dmacros file uses the same directory as the global preferences file.

The personal dmacros file uses the same directory as the personal preferences file. It is written through the Analyze:Display Filter Macros dialog.

If the global dmacros file exists, it is used only if the personal dmacros file does not exist; global and personal display filters are not merged.

Prior to Wireshark 4.4, a dfilter_macros file with a somewhat different syntax was used. That file is looked for at startup if a dmacros file is not found and used to migrate to the new format.

Color Filters (Coloring Rules)

The colorfilters files contain system-wide and personal color filters. Each line contains one filter, starting with the string displayed in the dialog box, followed by the corresponding display filter. Then the background and foreground colors are appended:

# a comment
@tcp@tcp@[59345,58980,65534][0,0,0]
@udp@udp@[28834,57427,65533][0,0,0]

The global colorfilters file uses the same directory as the global preferences file.

The personal colorfilters file uses the same directory as the personal preferences file. It is written through the View:Coloring Rules dialog.

If the global colorfilters file exists, it is used only if the personal colorfilters file does not exist; global and personal color filters are not merged.

Plugins

Wireshark looks for plugins in both a personal plugin folder and a global plugin folder.

On UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, the global plugin directory is lib/wireshark/plugins/ (on some systems substitute lib64 for lib) under the main installation directory (for example, /usr/local/lib/wireshark/plugins/). The personal plugin directory is $HOME/.local/lib/wireshark/plugins.

On macOS, if Wireshark is installed as an application bundle, the global plugin folder is instead %APPDIR%/Contents/PlugIns/wireshark.

On Windows, the global plugin folder is plugins/ under the main installation directory (for example, C:\Program Files\Wireshark\plugins\). The personal plugin folder is %APPDATA%\Wireshark\plugins (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark\plugins).

Lua plugins are stored in the plugin folders; compiled plugins are stored in subfolders of the plugin folders, with the subfolder name being the Wireshark minor version number (X.Y). There is another hierarchical level for each Wireshark plugin type (libwireshark, libwiretap and codecs). For example, the location for a libwireshark plugin foo.so (foo.dll on Windows) would be PLUGINDIR/X.Y/epan (libwireshark used to be called libepan; the other folder names are codecs and wiretap).

Note
On UNIX-compatible systems, Lua plugins (but not binary plugins) may also be placed in $XDG_CONFIG_HOME/wireshark/plugins, (or, if $XDG_CONFIG_HOME/wireshark does not exist while $HOME/.wireshark does exist, $HOME/.wireshark/plugins.)

Note that a dissector plugin module may support more than one protocol; there is not necessarily a one-to-one correspondence between dissector plugin modules and protocols. Protocols supported by a dissector plugin module are enabled and disabled in the same way as protocols built into Wireshark.

ENVIRONMENT VARIABLES

WIRESHARK_CONFIG_DIR

This environment variable overrides the location of personal configuration files. On UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX, it defaults to $XDG_CONFIG_HOME/wireshark (or, if that directory doesn’t exist but $HOME/.wireshark does exist, $HOME/.wireshark); this is typically $HOME/.config/wireshark. On Windows, it defaults to %APPDATA%\Wireshark (or, if %APPDATA% isn’t defined, %USERPROFILE%\Application Data\Wireshark). Available since Wireshark 3.0.

WIRESHARK_DEBUG_WMEM_OVERRIDE

Setting this environment variable forces the wmem framework to use the specified allocator backend for all allocations, regardless of which backend is normally specified by the code. This is mainly useful to developers when testing or debugging. See README.wmem in the source distribution for details.

WIRESHARK_RUN_FROM_BUILD_DIRECTORY

This environment variable causes the plugins and other data files to be loaded from the build directory (where the program was compiled) rather than from the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems, such as Linux, macOS, \*BSD, Solaris, and AIX.

WIRESHARK_DATA_DIR

This environment variable causes the various data files to be loaded from a directory other than the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems.

WIRESHARK_EXTCAP_DIR

This environment variable causes the various extcap programs and scripts to be run from a directory other than the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems.

WIRESHARK_PLUGIN_DIR

This environment variable causes the various plugins to be loaded from a directory other than the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on UNIX-compatible systems.

WIRESHARK_ABORT_ON_DISSECTOR_BUG

If this environment variable is set, Stratoshark will call abort(3) when a dissector bug is encountered. abort(3) will cause the program to exit abnormally; if you are running Stratoshark in a debugger, it should halt in the debugger and allow inspection of the process, and, if you are not running it in a debugger, it will, on some OSes, assuming your environment is configured correctly, generate a core dump file. This can be useful to developers attempting to troubleshoot a problem with a protocol dissector.

WIRESHARK_ABORT_ON_TOO_MANY_ITEMS

If this environment variable is set, Stratoshark will call abort(3) if a dissector tries to add too many items to a tree (generally this is an indication of the dissector not breaking out of a loop soon enough). abort(3) will cause the program to exit abnormally; if you are running Stratoshark in a debugger, it should halt in the debugger and allow inspection of the process, and, if you are not running it in a debugger, it will, on some OSes, assuming your environment is configured correctly, generate a core dump file. This can be useful to developers attempting to troubleshoot a problem with a protocol dissector.

WIRESHARK_QUIT_AFTER_CAPTURE

Cause Stratoshark to exit after the end of the capture session. This doesn’t automatically start a capture; you must still use -k to do that. You must also specify an autostop condition, e.g. -c or -a duration:…​. This means that you will not be able to see the results of the capture after it stops; it’s primarily useful for testing.

WIRESHARK_LOG_LEVEL

This environment variable controls the verbosity of diagnostic messages to the console. From less verbose to most verbose levels can be critical, warning, message, info, debug or noisy. Levels above the current level are also active. Levels critical and error are always active.

WIRESHARK_LOG_FATAL

Sets the fatal log level. Fatal log levels cause the program to abort. This level can be set to Error, critical or warning. Error is always fatal and is the default.

WIRESHARK_LOG_DOMAINS

This environment variable selects which log domains are active. The filter is given as a case-insensitive comma separated list. If set only the included domains will be enabled. The default domain is always considered to be enabled. Domain filter lists can be preceded by '!' to invert the sense of the match.

WIRESHARK_LOG_DEBUG

List of domains with debug log level. This sets the level of the provided log domains and takes precedence over the active domains filter. If preceded by '!' this disables the debug level instead.

WIRESHARK_LOG_NOISY

Same as above but for noisy log level instead.

AUTHORS

Stratoshark would not be the powerful, featureful application it is without the generous contributions of hundreds of developers.

A complete list of authors can be found in the AUTHORS file in Wireshark’s source code repository.

SEE ALSO

NOTES

This is the manual page for Stratoshark 0.9.0. The latest version of Stratoshark can be found at https://stratoshark.org/.

HTML versions of the Wireshark project man pages are available at https://www.wireshark.org/docs/man-pages/.